
Automated Validation
System for CEPC

Teng Li
Shandong University

2021.4

Outline
• HEP software validation toolkit
• Modern CI/CD system
• Proposed validation system for CEPC

Software Validation

Software validation

• Software validation is critical for HEP experiments
• Long lifecycle, complex, radical changing software
• Locale issues timely and automatically

• HEP software validation is sophisticated

code quality
check

build
test

unit
test

performance
test

physics
validation

low level
validation

high level
validation

commit
pull-request

release

code
review Continuous Integration Data production

DQM

Development of Validation Toolkit
• Large experiments usually develop their own validation toolkits

• ATLAS (ATN, RTT, FCT); CMS; LHCb (SimDQ)
• Similar functionalities, different focus

• A powerful toolkit was developed for JUNO for software validation
and data production

• Provide interfaces to define and run unit tests:

• Various detectable failures
• Performance profiling
• Validation on physics distributions

Development of Validation Toolkit

• Physics validation based on massive data
production

• Flexible production definition based on
steering files (.ini)

• Chained production workflow
• Automatic job generation, monitoring and

physics validation
• Integrated with the distributed computing

system (DIRAC transformation system)

Future Development Plan

• Unit test and performance test: CMake and Catch2
• Catch2 is a modern unit testing framework

• Support various features to build flexible unit tests, performance benchmarking etc.
• Could be easily integrated with CI system

• Data production and physics validation
• Design workflow definition tool based on yaml files
• Better integration with DIRAC transformation system
• Intergrate with modern CI system

Automated Continuous
Integration

Github Action System

• Github Action is a modern CI (Continuous Integration)/ CD
(Continuous Deployment) system released in 2019

• Continuously build and test triggered by commit/pull request
• Defined in yaml files as workflow:

checkout --> build --> unit test --> performance test
• Test jobs are executed on Github, or self-hosted runner machines

commit
pull-request

Github
Repo

baremedal

kubernetes

DIRAC

test jobs

*.log *.root

*.png artifacts

An example: LHCb validation system

• LHCb software validation consists of:
• A nightly test system

Test whether the code could be built on different platforms
• Standard/Customized Gitlab CI tests

• Check for code formatting and copyright notices
• Unit tests for all core software packages
• Analysis jobs

• See slides from Chris Burr
• https://indico.ihep.ac.cn/event/11444/session/12/contribution/173/mat

erial/slides/0.pdf

LHCb nightly test
• Run nightly builds and tests for all Physics applications

• Script based system built on CouchDB and CouchAPP
• Test large matrix of projects, platforms and branches
• Thousands of jobs are ran each day

LHCb nightly test
• LHCb nightly test is moving a new solution

Customized CI for physics validation
• For 'Analysis Productions', use

customized Gitlab CI to send jobs to
DIRAC with the help of transformation
system

• Generate CI jobs based on job options
• CI jobs call DIRAC to submit jobs to the

grid
• Use Celery and RabbitMQ for managing

long-running jobs
• Summary is sent to the GitLab CI log
• Simple flask front-end for exposing

detailed results

Proposed validation system
• Validation system proposed for CEPC

• Based on the Github Action system
• Re-use ideas/functionalities of LHCb
• Some parts were already implemented/tested

GitHubPull
Request

Commit
Code Central

Database

Build
installation CVMFS

Docker Performance
Testing

DIRAC
(shared)

Kubernetes
(dedicated)

Web
Portal

GitHub
Actions

Build
Servers

Test
Servers

READY

TODO

ONGOING

Main features

• Could be easily integrated with the software validation system
• Include build/unit tests, performance test and data production
• Testing log and key distribution uploaded as test artifacts
• Tests could be triggered on demand or regularly

• Task definition within yaml files
• Test workflow: check out --> external libs --> build --> tests --> ...
• What kind of tests should run on a daily/weekly/monthly basis
• More flexible way of defining data production

Main features

• Tests are run on self-hosted runners:
• kubernetes (within containers), DIRAC (grid resource)
• Be able to support test matrix (various platforms)

• Messaging components for long jobs
• Break with the Github limits for analysis jobs

• Automatic delopyment:
• CVMFS
• Container
• Web,

Main features

• CI test dashboard is being developed for easy monioring

Github
API

Metrics
Collector InfluxDB Grafana

Summary

• Validation toolkit for JUNO is introduced
• Planing to redisign with new technology based on CEPC's needs

• Recent CI/CD ideas were inspired by LHCb
• A CI/CD system is proposed for CEPC

• Most are raw ideas, feel free to comment
• Timeline:

• Prototype this year
• Fully functioning in 2022

Thanks for listening

