

Outline

- Introduction
- Inputs and setup
- Preliminary results
- Summary and plan

Jet performance is curial for physics study at CEPC

CEPC: 1M Higgs, ~ 10^{12} Z, and 10^{8} W Pairs

☑ H/W/Z boson ~ 70% hadronic decay Br's
☑ ZH events > 90% final states contains jets

Topics of jet studies

- Flavor tagging
- Gluon identification
- Jet charge of heavy flavor
- Boson mass regression

In a PFA detector, the complete information is a bunch of particles

- * 4 momenta
- * Particle type
- * Charge
- Impact parameters for tracks
- Conventional TMVA uses hand-eneneering high level features
- Here we will use "low" level information to realize so-called "end-toend" machine learning

CEPC jet tagging make use of high level features after vertex finding

	Total	nvtx==0	nvtx=1&& Nvtxall==1	nvtx==1& &nvtxall= =2	Nvtx>=2
В	400 000	83 099	156 094	76 239	80 135
С	400 000	223 238	169 400	3 392	662
uds	400 000	382 522	10 511	171	106

Input variables of each category

nvtx=0	trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr5sigma jprobz5sigma d0bprob d0cprob d0qprob z0bprob z0cprob z0qprob nmuon nelectron trkmass(17)	
nvtx=1&&nvtxall=1	trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprobz vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1 vtxmasspc vtxprob d0bprob d0cprob d0qprob z0bprob z0cprob z0qprob trkmass nelectron nmuon(25)	
nvtx=1&&nvtxall=2	trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprobz vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1 vtxmasspc vtxprob 1vtxprob vtxlen12all_jete vtxmassall (19)	
Nvtx>=2	trk1d0sig trk2d0sig trk1z0sig trk2z0sig trk1pt_jete trk2pt_jete jprobr jprobz vtxlen1_jete vtxsig1_jete vtxdirang1_jete vtxmom1_jete vtxmass1 vtxmult1 vtxmasspc vtxprob vtxlen2_jete vtxsig2_jete vtxdirang2_jete vtxmom2_jete vtxmass2 vtxmult2 vtxlen12_jete vtxsig12_jete vtxdirang12_jete vtxmom_jete vtxmass vtxmult 1vtxprob(29)	

Introduction — Jet tagging in CDR

DNN, xgboost, ... similar performance

Receiver Operating Characteristic Curve (ROC)

80% b-tagging eff. : Reject 90% c and 99% o jets

80% c-tagging eff. : Reject 75% b and 75% o jets

Comments for FN, CNN, RNN, and GN

arXiv:1806.01261v3

- FN: no reuse, no isolation of information
- CNN: locality and translation invariance, very effective for processing natural image data. Jet doesn't satisfy translation invariance
- RNN: The rule reused over each step, temporal invariance (similar to a CNN's translational invariance in space)
- GN: a natural representation for systems described entities whose order is undefined or irrelevant; in particular, their relational inductive bias does not come from the presence of something, but rather from the absence

Graph Network (GN)

- No algorithm works generally good everywhere
- Jet related studies need some algorithms with strong relational inductive bias in this field
- Graph
 - Nodes : momenta, impact parameters, PID, charge, ...
 - Edges : invariant mass, angles, ...
 - Graph level attributes

Architecture of network

Latent space: 128 or 256

 $\mathcal{O}(\{p_1,\ldots,p_M\}) = F\left(\sum_{i=1}^M \Phi(p_i)\right)$

Collider observables decomposed into perparticle maps Φ and functions F

Observable \mathcal{O}		$\mathbf{Map} \Phi$	Function F
Mass	m	p^{μ}	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Multiplicity	M	1	F(x) = x
Track Mass	m_{track}	$p^{\mu}\mathbb{I}_{ ext{track}}$	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Track Multiplicity	M_{track}	$\mathbb{I}_{ ext{track}}$	F(x) = x
Jet Charge [72]	\mathcal{Q}_{κ}	$(p_T, Q p_T^\kappa)$	$F(x,y)=y/x^{\kappa}$
Eventropy [74]	$z\ln z$	$(p_T, p_T \ln p_T)$	$F(x,y) = y/x - \ln x$
Momentum Dispersion [93]	p_T^D	(p_T, p_T^2)	$F(x,y) = \sqrt{y/x^2}$
C parameter [94]	C	$ig (ert ec p ert,ec p \otimes ec p / ert ec p ert)$	$F(x,Y) = \frac{3}{2x^2} [(\operatorname{Tr} Y)^2 - \operatorname{Tr} Y^2]$

Inputs and setup

- Input:
 - 300 k Z—> bb, cc, and other jets events
 - 100 k vvH \rightarrow bb, cc, gg event
- Same fast simulation configuration
- Using fastjet/ee-kt algorithm to force all particles to 2 jets
- Train: validation: test = 8:1:1

Results

Training process Loss and accuracy

Single jet tagging

Averaged accuracy is 89%, CDR: 80%

c-tagging rejection power still > 90% for 80% efficiency

Jet pair tagging

Averaged accuracy is 97%, good news for Rb & Rc measurement

Gluon pair tagging

Averaged accuracy is 92.5%

Performance dependence on E/p/PID/impact parameters

Summary and plan

 ML based on graph representation shows very promising performance for jet study @ fast sim level

Jet charge and boson (jet-pair) mass

Try other graph network method, such as DGCNN

O More study to make the "black box" transparency

• Move to full simulation and apply to analysis

• And detector optimization ...

The end

Thanks a lot

Termnologies

- Tagging efficiency: accuracy in ML
- ROC : Receiver Operating Characteristics Curve, mainly for binary classification,
 - In HEP it is Rejection rate vs. Tagging efficiency (FN rate vs. TP rate)
- AUC : Area under the ROC
- Confusion matrix
 - it is the efficiency matrix when neglecting SM backgrounds

		Actual Classes		
		POSITIVE	NEGATIVE	
Predicted Classes	POSITIVE	TRUE POSITIVE (TP)	FALSE POSITIVE (FP)	
	NEGATIVE	FALSE NEGATIVE (FN)	TRUE NEGATIVE (TN)	

DeepSets theorem

General parametrization for a function of sets