CEPC physics goals

LianTao Wang Univ. of Chicago

Joint workshop of the CEPC physics, software and new detector design, April 14. Yang Zhou.

The coming decades

- * More data, cleaner collisions.
- * Main target: precision, rare processes.

History on our side

- * First signal of something new are often "indirect".
 - * Beta decay: W (1933)
 - * Kaon rare decay: charm (1970)
 - * Neutrino scattering: Z (1973)
 - * Electroweak precision: top and Higgs (1980s-1990s)

*

* We expect an equally fruitful journey from now on.

Main goal of the physics studies:

How to fully realize the physics potential of data?

My talk

* The main physics case:

- * Higgs, Electroweak + opportunities of exotic searches
- * Clearly laid out in the Conceptual Design Report
 - * Will be brief on these familiar points.
- * I will try to highlight new developments opportunities for further studies.

A lot of on-going work

Higgs boson CP properties at CEPC

Measurement of Bs $\rightarrow \pi^{\circ}\pi^{\circ}$ at CEPC

Yuexin Wang, Manqi Ruan

2020.11.27

Exclusive hadronic Z decays

Shan Cheng

In collaboration with Qin Qin, Man-qi Ruan and Fu-sheng Yu

December 18, 2020

Meng Xiao (ZJU) <u>Xin Shi</u> (IHEP) Yanxi Gu (UCSD) Mengyao Liu (SDU)

Probing bino NLSP at lepton colliders

Chengcheng Han(韩成成) Sun Yat-Sen university(中山大学)

Based arXiv-2101.12131 (today) With Junmou Chen, Jin Min Yang, Mengchao Zhang

> CEPC Snowmass 2021.1.29

Measurement of H->ZZ* at the CEPC

<u>Ryuta Kiuchi</u>, Yanxi Gu, Min Zhong, Shih-Chieh Hsu, Xin Shi, Kaili Zhang

2020-01-29

2020 11 27

Stimulated by the Snowmass white paper activities organized by Manqi Ruan

Effective mixing angle($\sin^2 \theta_W^{eff}$) measurement at CEPC

Zhenyu Zhao, Siqi Yang, Minghui Liu, Liang Han

2020.11.27

My talk

- * Precision measurements: Higgs and beyond
- * Gateway to new physics
 - * A possible new physics scenario

My talk

- * Precision measurements: Higgs and beyond
- * Gateway to new physics
 - * A possible new physics scenario

Big question: why Higgs?

- * Spin 0 elementary particle, unique one of its kind.
- * We have seen spin-0 particles.
 - * They are composite, with other states around.

Big question: why Higgs?

- * Spin 0 elementary particle, unique one of its kind.
- * We have seen spin-0 particles.
 - * They are composite, with other states around.

* So, where does the Higgs come from?

What we know from LHC LHC upgrades won't go much further

Wednesday, August 13, 14

* How does Higgs evolve in the early universe?

Possible new signals

- * New physics must couple to the Higgs.
- * We will seek answers from the Higgs as well.

- * New physics must couple to the Higgs.
- * We will seek answers from the Higgs as well.

Higgs coupling

Example: naturalness

Composite Higgs

Neutral naturalness

Example: EW phase transition

Beyond CDR studies

* Refinement of Higgs coupling measurements.

Ryuta Kiuchi, Yanxi Gu, Min Zhong, Shih-Chieh Hsu, Xin Shi, Kaili Zhang...

* CP properties of the Higgs.

Yaquan Fang, Gangyi Guo, Gang Li, Qiyu Sha, Xinchou Lou Meng Xiao, Xin Shi

* EW precision

Liang Han, Zhijun Liang, Minghui Liu, Siqi Yang, Zhenyu Zhao, ...

For details, see the talks later in this meeting.

Gains from run at ttbar

* Top mass a key input for electroweak precision.

Parameter	Current	CEPC baseline	Improved m_t
S	3.4×10^{-2}	8.1×10^{-3}	6.6×10^{-3}
T	2.8×10^{-2}	9.2×10^{-3}	6.5×10^{-3}

CEPC studies \sqrt{s}

Gang Li, Zhan Li, Zhijun Liang, Yaquan Fang, Xiaohu Sun, Shudong Wang, Yiwei Wang, Shuiting Xin, Hao Zhang

See Xiaohu Sun's talk for details.

Threshold scans

- $4-\sqrt{s}$ scheme = {341.5,342.5,343,344.5} GeV
- $6-\sqrt{s}$ scheme = {341,342,342.5,343,343.5,344.5} GeV
- 8- \sqrt{s} scheme = {340,341,342,342.5,343,343.5,344.5,345} GeV

Great precision possible.

Beyond top mass

$$egin{aligned} \mathcal{O}_{Hq}^{(1)} &= rac{i}{\Lambda^2} (H^\dagger \overleftrightarrow{D}_\mu H) (ar{q}_L \gamma^\mu q_L), \ \mathcal{O}_{Hq}^{(3)} &= rac{i}{\Lambda^2} (H^\dagger au^I \overleftrightarrow{D}_\mu H) (ar{q}_L \gamma^\mu au^I q_L) \ \mathcal{O}_{Ht} &= rac{i}{\Lambda^2} (H^\dagger \overleftrightarrow{D}_\mu H) (ar{t}_R \gamma^\mu t_R), \ \mathcal{O}_{Hb} &= rac{i}{\Lambda^2} (H^\dagger \overleftrightarrow{D}_\mu H) (ar{b}_R \gamma^\mu b_R), \end{aligned}$$

Modifies Vqq couplings

Also qqVh, little impact on Higgs coupling fits

Better sensitivities to these running at the ttbar energies

Better sensitivities at ttbar

Better at higher energies

Gain up to a factor of a few

Even better if one can run at even higher energies.

Checking the foundation

* Testing quantum mechanics, relativity, locality...

$$\sigma(e^+e^- \to \gamma\gamma) \ge \sigma_{\rm SM}(e^+e^- \to \gamma\gamma)$$

An unambiguous prediction following from basic rules of quantum field theory

J. Gu, C. Zhang and LTW, 2011.03055

EFT and beyond

- * Effective field theory has been widely used to characterize new physics effects.
- * There could be important exceptions.

It would useful to look at several benchmark scenarios.

My talk

- * Precision measurements: Higgs and beyond
- * Gateway to new physics
 - * A possible new physics scenario

* Dark sector coupling to the SM

 $O_{\rm SM} \cdot O_{\rm dark}$

 $O_{\rm SM}$: gauge inv. SM operator $O_{\rm dark}$: dark sector operator

- * More relevant coupling \Leftrightarrow lowest dim operator
 - Unique choice: $O_{SM} = HH^{\dagger}$. Higgs portal. ⋇

Higgs portal dark matter $\mathcal{O} = H^{\dagger} H X_{dm} X_{dm} \implies h \to X_{dm} X_{dm}$

Higgs exotic decay

Complementary to hadron collider searches

Long lived particle?

A recent study for CEPC

Yuelei Zhang, Xiang Chen, Jifeng Hu, Liang Li

 * 10¹² Zs at the CEPC goes a long way in probing the dark sector.

Rare Z decay

J. Liu, X.P. Wang, W. Xue, LTW

Window into dark sector

J. Liu, X.P. Wang, W. Xue, LTW

There are certainly many more scenarios to explore here.

B, charm, hadron, t

Particle production

Particle	@ Tera- Z	[@] Belle II		@ LHCb
b hadrons				
B^+	6×10^{10}	3×10^{10}	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	3×10^{13}
B^0	$6 imes 10^{10}$	3×10^{10}	$(50 \mathrm{ab}^{-1} \mathrm{ on } \Upsilon(4S))$	$3 imes 10^{13}$
B_s	2×10^{10}	3×10^8	$(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$	8×10^{12}
b baryons	1×10^{10}			1×10^{13}
Λ_b	1×10^{10}			1×10^{13}
c hadrons		•		
D^0	2×10^{11}			
D^+	6×10^{10}			
D_s^+	3×10^{10}			
Λ_c^{+}	$2 imes 10^{10}$			
τ^+	3×10^{10}	5×10^{10}	$(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$	

From CEPC's CDR using fragmentation ratios from Amhis et al, 17

- Similar statistical sample of $B^{0,\pm},\, \tau$'s at Belle 2 and CEPC
- Two order of magnitude more B_s at CEPC wrt to Belle 2
- b-baryon physics possible at the CEPC
- Limited possibilities for charm physics at Belle 2
 E. Stamou (U Chicago)
 Flavour @ CEPC

Great place to probe rare flavor processes!

Naive estimates:

Observable	Current sensitivity	Future sensitivity	Tera- Z sensitivity
$BR(B_s \to ee)$	$2.8 \times 10^{-7} (\text{CDF}) [10]$	$\sim 7\times 10^{-10}~({\rm LHCb})~[18]$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s\to \mu\mu)$	$0.7 \times 10^{-9} \ (LHCb) \ [8]$	$\sim 1.6 \times 10^{-10} \ (LHCb) \ [18]$	$\sim {\rm few} \times 10^{-10}$
${\rm BR}(B_s\to\tau\tau)$	$5.2 \times 10^{-3} (LHCb) [9]$	$\sim 5\times 10^{-4}~({\rm LHCb})~[18]$	$\sim 10^{-5}$
R_K, R_{K^*}	$\sim 10\%$ (LHCb) $[5,4]$	${\sim} {\rm few}\%$ (LHCb/Belle II) [18, 40]	$\sim \text{few }\%$
${\rm BR}(B\to K^*\tau\tau)$	_	$\sim 10^{-5}$ (Belle II) [40]	$\sim 10^{-8}$
${\rm BR}(B\to K^*\nu\nu)$	4.0×10^{-5} (Belle) [44]	$\sim 10^{-6}$ (Belle II) [40]	$\sim 10^{-6}$
${\rm BR}(B_s\to\phi\nu\bar\nu)$	$1.0 \times 10^{-3} \; (\text{LEP}) \; [15]$	_	$\sim 10^{-6}$
$\mathrm{BR}(\Lambda_b \to \Lambda \nu \bar{\nu})$	_	_	$\sim 10^{-6}$
${\rm BR}(\tau \to \mu \gamma)$	4.4×10^{-8} (BaBar) [24]	$\sim 10^{-9}$ (Belle II) [40]	$\sim 10^{-9}$
${\rm BR}(\tau\to 3\mu)$	2.1×10^{-8} (Belle) [37]	$\sim {\rm few} \times 10^{-10}$ (Belle II) [40]	$\sim {\rm few} \times 10^{-10}$
$\frac{\mathrm{BR}(\tau \rightarrow \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \rightarrow e \nu \bar{\nu})}$	3.9×10^{-3} (BaBar) [23]	$\sim 10^{-3}~({\rm Eylle~II})~[40]$	$\sim 10^{-4}$
${\rm BR}(Z\to \mu e)$	$7.5 \times 10^{-7} (ATLAS) [3]$	$\sim 10^{-8} \; (\text{ATLAS/CMS})$	$\sim 10^{-9} - 10^{-11}$
${\rm BR}(Z\to\tau e)$	$9.8 \times 10^{-6} \; (\text{LEP}) \; [17]$	$\sim 10^{-6}~({\rm ATLAS/CMS})$	$\sim 10^{-8} - 10^{-11}$
${\rm BR}(Z\to\tau\mu)$	$1.2 \times 10^{-5} (\text{LEP}) [13]$	$\sim 10^{-6}~({\rm ATLAS/CMS})$	$\sim 10^{-8} - 10^{-10}$

Lepton universality

Intriguing connection with some recently anomalies, such as R_{D.}

Another important channel

 $B_s \to \phi \nu \nu$

	Experimental	SM Prediction
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 \times 10^{-5}$	$(2.17 \pm 0.30) \times 10^{-6}$
$BR(B^0 \to K^{*0} \nu \bar{\nu})$	$< 1.8 \times 10^{-5}$	$(9.48 \pm 1.10) \times 10^{-6}$
$BR(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$< 1.6 \times 10^{-5}$	$(4.68 \pm 0.64) \times 10^{-6}$
$BR(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$<4.0\times10^{-5}$	$(10.22 \pm 1.19) \times 10^{-6}$
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$(11.84 \pm 0.19) \times 10^{-6}$

Full sim based study in progress

 $E_{Neutral}^{ISO}$

0.2 rad

The preliminary cut chain

	N_S	N_B	S/sqrt(B)	sqrt(S+B)/S
Total	180000	1.5e+11	0.46	2.15
$N_{\phi}>0$	6.78e4	4.82e+09	0.98	1.02
$E_l < 1~{ m GeV}$	5.55e4	2.05e9	1.22	0.82
$E_{Neutral}^{ISO} < 2.7~{ m GeV}$	4.59e4	6.91e8	1.75	0.57
$E_{track}^{ISO} < 4~{ m GeV}$	4.25e4	4.17e8	2.08	0.48
lpha < 0.8	1.71e4	5.77e+5	22.52	0.045
Efficiency	0.095	3.85e-06		

Ф

Yudong Wang, Lingfeng Li, Manqi Ruan, Yanyun Duan, Tao Liu, Taifan Zheng ϕ

 B_{s}

My talk

- * Precision measurements: Higgs and beyond
- * Gateway to new physics
 - * A possible new physics scenario

Disagreement with SM \Rightarrow (1-loop) M_{NP} \sim 300 GeV. Or, with 2-loop contribution, M_{NP} \sim 30 GeV.

A suite of sensitive searches and measurement at CEPC

NP at 1-loop

 $m_{\tilde{\mu}} \sim m_{\tilde{B}} \sim 100 - 500 \text{ GeV}$

Probably within the LHC reach

Precision Z-decay measurement could provide complementary information.

Pseudo scalar Higgs constrained by EW precision tests, flavor physics at CEPC

Conclusions

- The main physics goal: precision measurement of Higgs.
 - * Well documented in the CDR.
 - * Refinement underway.
- Physics potential in new physics searches still has many open topics.
 - * Great opportunities to make progresses.

CP of Higgs

Yaquan Fang, Gangyi Guo, Gang Li, Qiyu Sha, Xinchou Lou

See Ke Li and Qiyu Sha's talk for details.

Another fundamental property of the Higgs which is not completely nailed.

For other CP-mixing p hypothesis, a similar result could be derived with ω

Slides from Qiyu Sha

Higgs portal

$$\lambda O_{\rm SM} \cdot O_{\rm dark} \rightarrow \left(\lambda \frac{m_W}{g}\right) h \cdot O_{\rm dark}$$

- Producing dark sector particles through the Higgs portal.
- * Higgs rare decays:
 - * Higgs → invisible at LHC can constrain down to a few percent.
 - * A lot of room for exotic decay:

$$O_{\text{dark}} = \bar{\psi}_{\text{dark}} \psi_{\text{dark}}, \quad \lambda = \frac{1}{\Lambda}$$
$$\Lambda \sim 10 \text{ TeV} \rightarrow \text{BR}(h \rightarrow \bar{\psi}_{\text{dark}} \psi_{\text{dark}}) \leq 10^{-2}$$

Higgs-top couplings: FCNC c

Cen Zhang

Higgs-top couplings: Yukawa Zhen Liu

$$\mathcal{O}_{tH} = rac{1}{\Lambda^2} (H^\dagger H) (ar{q}_L ilde{H} t_R),$$

Modifies top Yukawa, both real and imaginary parts.

Main observables: $h \rightarrow \gamma \gamma$, $h \rightarrow gg$

Extra