

Exclusive description on hadronic decays of the Higgs boson

- Jun Gao
- INPAC, Shanghai Jiao Tong University
- based on 2101.08916 with YaLu Hu, ChuanLe Sun, Xiao-Min Shen
- The 3rd Workshop of the CEPC Physics, Detector and Software, Yangzhou
 - April 16, 2021

Higgs boson production and decays

and decay of the Higgs boson in most theory calculations

[LHCHXSWG]

decay branching ratios vs. mass

• The tiny width ($\Gamma/M \sim 3 \times 10^{-5}$) and 0-spin of the Higgs boson ensure a simple factorization of production [Davies, Steinhauser, Wellmann, 2017]

[Herzog, Ruijl, Ueda, Vermaseren, Vogt, 2017]

hadronic width of the Higgs boson vs QCD scale

known to $O(a_s^4)$ neglecting certain mass corrections from Higgs effective theory in heavy top limit

Hadronic decays of the Higgs boson smaller Higgs mass comparing to the top quark

Higgs effective theory by integrating out top quarks

$$\mathcal{L}_{\text{eff}} = -\frac{H^0}{v^0} \left(C_1[\mathcal{O}_1'] + C_2[\mathcal{O}_2'] \right) + \mathcal{L}_{\text{QCD}}' \qquad \mathcal{O}_1' =$$

 $\Gamma(H \to \text{hadrons}) = A_{b\bar{b}} \left[(C_2)^2 (1 + \Delta_{22}) + C_1 C_2 \Delta_{12} \right] + A_{qq} (C_1)^2 \Delta_{11}$

$$(G_{a,\mu\nu}^{0\prime})^2$$
, $\mathcal{O}_2' = m_b^{0\prime} \bar{b}^{0\prime} b^{0\prime}$

 \Rightarrow operator mixing at higher-orders in perturbation theory

☆ as a results the separation of bb/cc and gg channels/ couplings is not uniquely defined t

when referring H->light quarks (s/u/d), assuming enhanced Yukawa (>>mq/v); mixing with O_1 can be neglected

Theory uncertainty on Hadronic width

input parameters and some straight forward works on the perturbative calculations

					decay	intrinsic	FCC-ee prec.
Partial width	OCD	electroweak	total	available order	$H \to b \overline{b}$	$\sim 0.2\%$	$\sim 0.8\%$
$H \rightarrow b\bar{b}/c\bar{c}$	$\sim 0.2\%$			N^4LO / NLO	$H \to c\bar{c}$	$\sim 0.2\%$	$\sim 1.4\%$
$H \rightarrow \tau^+ \tau^- / \mu^+ \mu^-$		< 0.3%	< 0.470	-/ NLO	$H \to \tau^+ \tau^-$	< 0.1%	$\sim 1.1\%$
$H \to aa$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$	$N^{3}LO / NLO$	$H \to \mu^+ \mu^-$	< 0.1%	$\sim 12\%$
$\begin{array}{c} H \rightarrow \gamma \gamma \\ H \rightarrow \gamma \gamma \end{array}$	< 0.1%	< 1%	<1%	NLO / NLO	$H \to gg$	$\sim 1\%$	$\sim 1.6\%$
$H \rightarrow Z\gamma$	< 0.1%	$\sim 5\%$	$\sim 5\%$		$H \to \gamma \gamma$	< 1%	$\sim 3.0\%$
$H \to WW/ZZ \to 4f$	$\sim 0.12\%$	< 0.3%	$\sim 0.5\%$		$H \to Z\gamma$	$\sim 1\%$	~13% for CEPC
					$H \to WW$	$\lesssim 0.3\%$	$\sim 0.4\%$
					$H \to ZZ$	$\lesssim 0.3\%^{\dagger}$	$\sim 0.3\%$

Theory uncertainty can be under CEPC/FCC-ee precision goal, giving the projected improvement on SM

[FCC-ee theory, 1906.05379] intrinsic/perturbative uncertainty on partial width vs. exp. precision

only a few channels need some additional works

Theory uncertainty on Hadronic width

input parameters and some straight forward works on the perturbative calculations

decay	para. m_q	para. α_s	para. M_H	-	para. m_q	para. α_s	para. M_H	FCC-ee prec.
$H \to bb$	1.4%	0.4%	_		0.6%	< 0.1%		$\sim 0.8\%$
$H \to c\bar{c}$	4.0%	0.4%			$\sim 1\%$	< 0.1%	_	$\sim 1.4\%$
$H \to \tau^+ \tau^-$	—		—		—	—	—	$\sim 1.1\%$
$H \to \mu^+ \mu^-$	_	—	—		_	—	_	$\sim 12\%$
$H \to gg$	< 0.2%	3.7%	—			0.5%~(0.3%)	_	$\sim 1.6\%$
$H \to \gamma \gamma$	< 0.2%	_	—		—	—	_	$\sim 3.0\%$
$H \to Z\gamma$	_		2.1%		_	—	$\sim 0.1\%$	~13% for CEPC
$H \to WW$	_		2.6%		_	_	$\sim 0.1\%$	$\sim 0.4\%$
$H \to ZZ$	_	_	3.0%		_	_	$\sim 0.1\%$	$\sim 0.3\%$

parametric uncertainty on partial width vs. exp. precision

current input parameters

$$\delta \alpha_s = 0.0015$$
 and $\delta m_b = 0.03 \text{ GeV}$

 $\delta m_{\rm c} = 0.025 \; {\rm GeV}$

 $\delta m_t = 0.85 \text{ GeV}$ and $\delta M_H = 0.24 \text{ GeV}$

Theory uncertainty can be under CEPC/FCC-ee precision goal, giving the projected improvement on SM

[FCC-ee theory, 1906.05379]

projected input parameters

$$\delta \alpha_s = 0.0002$$
 and $\delta m_b = 13 \text{ MeV}$

 $\delta m_{\rm c} = 7 \, {\rm MeV}$

 $\delta m_t = 50 \text{ MeV}$ and $\delta M_H = 10 \text{ MeV}$

charm-quark tagging

6

MC event generator

★ A QCD MC event generator requires ingredients from both perturbative calculations (fixed-order and resummation) and non-perturbative modeling (tunned to data), and a consistent matching of the two

c1.5

from NP models based on dispersion approach

extracted strong coupling

$$ected = rac{1}{\sigma} rac{d\sigma(y - \Delta y)}{dy}_{
m perf}$$

power suppressed NP

$$\frac{1}{\mu_I} \int_0^{\mu_I} dk_\perp \tilde{\alpha}_s(k_\perp^2)$$

[Dokshitzer+, hep-ph/9512336]

POWHEG method

POWHEG method in brief

 \therefore later passed to k_T ordered (or vetoed) shower program (SMC) for subsequent emissions below the first hard scale; not SMC specific, negligible fraction of events with negative weights; accuracy NLO+(N')LL

 Positive Weight Hardest Emission Generator for matching NLO QCD fixed-order predictions with parton shower MC [Nason 2004], one of the two mostly used schemes at the LHC (POWHEG&MC@NLO)

POWHEG method

POWHEG method in brief

$$\Delta(\Phi_n, p_T) = \exp\left(-\int \frac{[\mathrm{d}\Phi_{rad}R(\Phi_{n+1})\theta(k_T(\Phi_{n+1})))}{B(\Phi_n)}\right)$$

$$\bar{B}(\Phi_n) = [B(\Phi_n) + V(\Phi_n)] + \int \mathrm{d}\Phi_{rad}[R(\Phi_{n+1}) - V(\Phi_{n+1})] + \int \mathrm{d}\Phi_{r$$

$$d\Gamma = \bar{B}(\Phi_n) d\Phi_n \Big(\Delta(\Phi_n, p_T^{min}) + \Delta(\Phi_n, k_T(\Phi_{n+1})) \Big) + \Delta(\Phi_n, k_T(\Phi_{n+1})) \Big) = \bar{B}(\Phi_n) d\Phi_n \Big(\Delta(\Phi_n, p_T^{min}) + \Delta(\Phi_n, k_T(\Phi_{n+1}))) \Big) = \bar{B}(\Phi_n) d\Phi_n \Big(\Delta(\Phi_n, p_T^{min}) + \Delta(\Phi_n, k_T(\Phi_{n+1}))) \Big)$$

 \Rightarrow later passed to k_T ordered (or vetoed) shower program (SMC) for subsequent emissions below the first hard scale; not SMC specific, negligible fraction of events with negative weights; accuracy NLO+(N')LL

 Positive Weight Hardest Emission Generator for matching NLO QCD fixed-order predictions with parton shower MC [Nason 2004], one of the two mostly used schemes at the LHC (POWHEG&MC@NLO)

Our work: NNLO+PS based on POWHEG method and an unitarized merging of different multiplicities

Total partial width

$$\frac{1}{\Gamma_0} \frac{d\Gamma}{dE_X} = H(Q^2, m_b^2, \mu) \int dk S(k, \mu) \delta(E_X - k) \qquad \Gamma_s(x) \equiv \int_0^x dx \frac{d\Gamma_s}{dx} = \Gamma_0 (1 + \Gamma_s^{(1)}(x) + \Gamma_s^{(2)}(x))$$
$$\frac{d\Gamma_{3j}(x)}{dx} = \Gamma_0 \left(\frac{d\Gamma_{3j}^{(1)}(x)}{dx} + \frac{d\Gamma_{3j}^{(2)}(x)}{dx} \right) \qquad \Gamma^{NNLO} = \Gamma_s(\delta) + \int_\delta dx \frac{d\Gamma_{3j}(x)}{dx}$$

partial width of H->bb vs. resolution parameter

♦ A NNLO calculation of the hadronic decays requires inputs of decays to 3-jets at NLO and the singular terms in the 2-jets limit up to NNLO; reproducing the known NNLO total partial widths of H->bb, gg, qq [JG+, 2021]

bottom-quark mass power corrections are small ~0.4% for total width

[MeV/GeV]	$\Gamma_{b\bar{b}}(m_b \neq 0)$	$\Gamma_{b\bar{b}}(m_b=0)$	Γ_{gg}
$\mu = m_h/2$	2.314	2.320	0.3488
$\mu = m_h$	2.293	2.302	0.3437
$\mu = 2m_h$	2.252	2.263	0.3290

NNLO partial width of H->bb, qq, gg

NNLOPS

for Higgs boson decaying into 3-jets; 2. followed by an unitarized merging with 2-jets sample

$$\bar{B}^*(\Phi_3) = \tilde{\mathcal{D}}(x(\Phi_3))[B(\Phi_3)(1-\tilde{D}^{(1)}(x(\Phi_3))) + V(\Phi_3)]$$
$$+ \int \mathrm{d}\Phi_{rad}[\tilde{\mathcal{D}}(x(\Phi_4))R(\Phi_4) - \tilde{\mathcal{D}}(x(\Phi_3))C(\Phi_4)]$$

$$d\Gamma = \bar{B}^*(\Phi_3)\theta(\tau(\Phi_3) - \tau_m)d\Phi_3\left(\Delta(\Phi_3, p_T^{min}) + \Delta(\Phi_3, k_T(\Phi_4))\frac{R(\Phi_4)}{B(\Phi_3)}d\Phi_{rad}\right) + \bar{B}^*(\Phi_3)\theta(\tau_m - \tau(\Phi_3))d\Phi_3.$$

◆ Matching of NNLO calculations with parton shower for hadronic decays can be done through: 1. NLOPS

POWHEG implementation of NLOPS for H->3 jets with damping on Born phase space

 $\Phi_4)].$

$$\mathcal{D}(x) = \exp\left[\Gamma_s^{(1)}(x) + \Gamma_s^{(2)}(x) - (\Gamma_s^{(1)}(x))^2/2\right]$$

unitarized merging using thrust as the resolution parameter and vetoed shower

Perturbative uncertainties

scale, and QCD scale in parton showers, each responsible for its designed kinematic region

normalized differential width vs. 1-Thrust, at parton level, for H->bb

Perturbative uncertainties of H->bb/qq/gg can be estimated by varying the merging scale, renormalization

Perturbative uncertainties

scale, and QCD scale in parton showers, each responsible for its designed kinematic region

normalized differential width vs. 1-Thrust, at parton level, for H->gg

Perturbative uncertainties of H->bb/qq/gg can be estimated by varying the merging scale, renormalization

Complete results

PYTHIA 8 predictions, for all hadronic decay channels H->bb

normalized differential width vs. 1-Thrust, at parton/hadron level, for H->bb, uu, gg

• Comparison of predictions at parton and hadron level with full perturbative uncertainties, also shown are

Hadronization and mass cc.

order predictions, and the quark-mass power corrections

ratio of normalized differential width vs. 1-Thrust

+ Further comparison of H->bb and H->uu, including the size of hadronization corrections, their fixed-

☆ Hadronization corrections are significant at peak/tail region

★ PS matched predictions are larger by 20% comparing to FO in the 3-jet region

 \Rightarrow The bottom quark mass lead to a 5% suppression comparing to light quarks in the 3-jet region

Outlook

inputs, e.g., with N3LO matrix elements and parton shower of NLL accuracy

 \Rightarrow comparison with the GENEVA generator (for H->gg, qq), (a NNLOPS with further resummed contributions from SCET)

★ matching with parton shower MCs at NLL accuracy, available in PanLocal/PanGlobal

☆ incorporating N3LO matrix element corrections, exist for long times

• Better understanding on the perturbative uncertainties; possible improvements on various perturbative

[Salam+, 2020]

[Mondini, Williams, 2019]

Outlook

inputs, e.g., with N3LO matrix elements and parton shower of NLL accuracy

 \Rightarrow comparison with the GENEVA generator (for H->gg, qq), (a NNLOPS with further resummed contributions from SCET)

 \Rightarrow matching with parton shower MCs at NLL accuracy, available in PanLocal/PanGlobal

☆ incorporating N3LO matrix element corrections, exist for long times

Thank you for your attention!

 $\Sigma_{MC}/\Sigma_{NLL}(\alpha_{s}\rightarrow 0, \lambda)$

• Better understanding on the perturbative uncertainties; possible improvements on various perturbative

[Salam+, 2020]

[Mondini, Williams, 2019]

Modeling on Hadronic decays

Yukawa couplings via event shapes, exotic decays into heavy quarks

discrimination of gg and qq channels

◆ Also important for direct search of new physics, e.g., looking for light-quark decay modes from enhanced [**JG**, 2016]

expected exclusion limit on BRs to light quarks normalized to BR to gluons

from various event shapes

Full results for total broadening

PYTHIA 8 predictions, for all hadronic decay channels

◆ Comparison of predictions at parton and hadron level with full perturbative uncertainties, also shown are

normalized differential width vs. total jet broadening, at parton/hadron level, for H->bb, uu, gg