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Introduction
Machine learning and the prospect of quantum computing

� Machine learning has blossomed in the last decades and becomes essential
in many fields.

� It played a significant role in solving High Energy physics problems, such as
reconstruction, particle identification;

� and handling high dimensional and complex problems using deep learning.
� Quantum computing is a new idea for our workstations to process data faster

than currently achievable.
� Machine learning & quantum computing may:

• locating more computationally complex feature spaces
• better data classification
• smarter algorithms that can give us accurate prediction.

� Companies such as Google and IBM are committed to accelerating the
development of quantum technology.
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Objective

� Apply quantum machine learning in high energy physic.
� We compare quantum support-vector machine to classical support-vector

machine.
� The comparison is demonstrated in terms of process from different CEPC

and LHC:

• CEPC: e+e− → Z(→ qq̄)H(→ γγ) & e+e− → Z(→ µ−µ+)H(→
ννqq)

• LHC: (VBF) H → γγ

� We use IBM quantum simulator " qasm_simulator "
� The simulator is build using Qiskit packages
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Support-vector machines

SVM

� SVMs are supervised machine learning algorithms for classifications.

(~xi, yi) . . . (~xn, yn)

� ~xi is n-dimensional vector and yi is class label of each data point.

� SVM tries to maximize the margin between hyperplanes.
� Useful if the training dataset is linearly separable.
� It’ll hard to separate non-linear datasets.
� So a trick called kernel machine is introduced.
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Support-vector machines

Kernel trick

� The dot product of a feature ~xi and ~xj , after being transferred to a
higher dimension via a function f , is called kernel.

kij(~xi, ~xj) = 〈f(~xi), f(~xj)〉

� Non-leaner futures can then mapped to a liner ones.
� The function f(~x) could be:

• linear
• polynomial
• Radial basis function
• sigmoid

� In our case, we’ll be using a linear function;
� and we call the SMV a classical SVM.
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Quantum support-vector machines

Quantum kernel

� In a quantum kernel, a classical feature ~x is mapped to higher dimen-
sion Hilbert space like |φ(~x)〉〈φ(~x)| in such a way that:

kij(~xi, ~xj) = |〈φ(~xi)|φ(~xj)〉|2

� Feature map quantum circuits:
• ZZFeatureMap
• ZFeatureMap
• PauliFeatureMap

� Many more in Qiskit packages.

arXiv:1804.11326v2
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Variational quantum algorithm

VQA

� VQA uses a classical optimizer to train a parametric quantum circuit.

� It takes advantage of quantum parallelism, the superposition of quantum states that
allows a circuit to simultaneously process 2n eigenstates.

� For the classical machine learning algorithm, the model is such as a neural network
running on the classical computer.

� For the variational quantum algorithm, the model is a quantum circuit running on a
quantum computer.

arXiv:2012.09265 arXiv:2002.09935
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CEPC: e+e− → Z(→ qq̄)H(→ γγ)
Training and testing strategy
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Training and testing strategy

� Two variables as inputs, so the number of qubit is 2 for the QSVM.
� Then training with different dataset size like 50, 100, 150, 200, 500
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CEPC: e+e− → Z(→ qq̄)H(→ γγ)
Shape of the training kernel matrix in QSVM

0 10 20 30 40

0

10

20

30

40

QSVC clustering kernel matrix (training)

0 100 200 300 400

0

100

200

300

400

QSVC clustering kernel matrix (training)

� The more clustered features the better the kernel.
� Quantum kernel, slide 6, from 50 to 500 training dataset.
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CEPC: e+e− → Z(→ qq̄)H(→ γγ)
ROC
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� ROC with 50, 100, 150 events fort both training and testing dataset.
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CEPC: e+e− → Z(→ qq̄)H(→ γγ)
ROC

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 re

je
ct

io
n

QSVM
SVM

0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck

gr
ou

nd
 re

je
ct

io
n

QSVM
SVM

� ROC for 200 and 500 events for both training and testing dataset.
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CEPC: e+e− → Z(→ qq̄)H(→ γγ)
Checking the separation power
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� 1000 events (training = 500, testing = 500)
� Unlike the TMVA, it’s the separation margin between the classes.
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CEPC: e+e− → Z(→ µ−µ+)H(→ ννqq)
Input datasets

� Preliminary cut on di-muon invariant mass 80 < Mµµ < 100 GeV
� 837 background and 3263 signal events
� Taking the half from each data set for training and testing.
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CEPC: e+e− → Z(→ µ−µ+)H(→ ννqq)
Training and testing output

� VQA with a classical optimiser in IBM simulator.
� Result of the training and testing:

• 67.21% signal efficiency
• Reject 32.42% of the background
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LHC: (VBF) H → γγ
Training and testing strategy
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Training and testing strategy

� Six variables as inputs, so the number of qubit is 6 for the QSVM.
� Then training with different dataset size like 50, 100, 150, 200, 500
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LHC: (VBF) H → γγ
Shape of the training kernel matrix in QSVM
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� The more clustered features the better the kernel.
� Quantum kernel, slide 6, from 50 to 500 training dataset.
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LHC: (VBF) H → γγ
ROC
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� ROC with 50, 100, 150 events fort both training and testing dataset.
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LHC: (VBF) H → γγ
ROC
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� ROC for 200 and 500 events for both training and testing dataset.
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LHC: (VBF) H → γγ
Checking the separation power
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� 1000 events (training = 500, testing = 500)
� Unlike the TMVA, it’s the separation margin between the classes.
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LHC: (VBF) H → γγ
SVM with more stats
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� 20k events (training = 10k, testing = 10k)
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Summary

� QSMV and SVM are compared using few events up to 500 using the qsam
simulator:
• Using 2 qubits e+e− → ZH → γγqq̄ (CEPC)
• Using 6 qubits pp→ H → γγ (LHC)

� CEPC: e+e− → Z(→ µ−µ+)H(→ ννqq) using VQA.
� We test the performance of QSVM and SVM using ROCs and SB separation.
� The computational is time expensive specially when running locally.

TO DO . . .

• Optimizing QSVM, SVM and QVA for better results.
• Train more events after setting the framework in the server.
• Train and test the same algorithm in real IBM quantum computer.

� We are open to any comments and suggestions as we still learning.
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Additional slides

� Commonly used single- and multi-qubit quantum gates
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