The Joint Workshop of the CEPC Physics, Software and New Detector Concept

Application of quantum computing at Higgs measurements

Abdualazem Fadol, Zhao Yu, Ryuta Kiuchi, Fangyi Guo, Shuiting Xin Yaquan Fang, Xin Shi, Xifeng Ruan

April 16, 2021

Institute for Collider Particle Physics

UNIVERSITY OF THE WITWATERSRAND

Contents

□ Introduction

□ Objective

□ Support-vector machines

- Classical kernel (SVM)
- Quantum kernel (QSVM)
- Variational quantum algorithm (VQA)

2

□ QSVM vs SVM at the CEPC

•
$$e^+e^- \to Z(\to q\bar{q})H(\to \gamma\gamma)$$

• $e^+e^- \rightarrow Z(\rightarrow \mu^-\mu^+)H(\rightarrow \nu\nu qq)$

□ QSVM vs SVM at the LHC

• (VBF) $H \rightarrow \gamma \gamma$

□ Summary

Machine learning has blossomed in the last decades and becomes essential in many fields.

- It played a significant role in solving High Energy physics problems, such as reconstruction, particle identification;
- $\hfill\square$ and handling high dimensional and complex problems using deep learning.
- Quantum computing is a new idea for our workstations to process data faster than currently achievable.
- □ Machine learning & quantum computing may:
 - locating more computationally complex feature spaces
 - better data classification
 - smarter algorithms that can give us accurate prediction.
- □ Companies such as Google and IBM are committed to accelerating the development of quantum technology.

- □ Apply quantum machine learning in high energy physic.
- We compare quantum support-vector machine to classical support-vector machine.
- □ The comparison is demonstrated in terms of process from different CEPC and LHC:
 - CEPC: $e^+e^- \to Z(\to q\bar{q})H(\to \gamma\gamma)$ & $e^+e^- \to Z(\to \mu^-\mu^+)H(\to \nu\nu qq)$
 - LHC: (VBF) $H \rightarrow \gamma \gamma$
- We use IBM quantum simulator " qasm_simulator "
- □ The simulator is build using Qiskit packages

SVM SVMs are supervised machine learning algorithms for classifications. $(\vec{x}_i, y_i) \dots (\vec{x}_n, y_n)$ \vec{x}_i is n-dimensional vector and y_i is class label of each data point.

- $\hfill\square$ SVM tries to maximize the margin between hyperplanes.
- □ Useful if the training dataset is linearly separable.
- □ It'll hard to separate non-linear datasets.
- $\hfill\square$ So a trick called kernel machine is introduced.

Support-vector machines

Kernel trick

 \Box The dot product of a feature \vec{x}_i and \vec{x}_j , after being transferred to a higher dimension via a function *f*, is called kernel.

 $k_{ij}(\vec{x}_i, \vec{x}_j) = \langle f(\vec{x}_i), f(\vec{x}_j) \rangle$

- \Box Non-leaner futures can then mapped to a liner ones.
- \Box The function $f(\vec{x})$ could be:
 - linear
 - polynomial
 - Radial basis function
 - sigmoid
- \Box In our case, we'll be using a linear function;
- \square and we call the SMV a classical SVM.

Quantum kernel

 \Box In a quantum kernel, a classical feature \vec{x} is mapped to higher dimension Hilbert space like $|\phi(\vec{x})\rangle\langle\phi(\vec{x})|$ in such a way that:

$$k_{ij}(\vec{x}_i, \vec{x}_j) = |\langle \phi(\vec{x}_i) | \phi(\vec{x}_j) \rangle|^2$$

Feature map quantum circuits:

- ZZFeatureMap
- ZFeatureMap
- PauliFeatureMap
- □ Many more in Qiskit packages.

arXiv:1804.11326v2

Variational quantum algorithm

 $\underline{\mathsf{CEPC}}: e^+e^- \to Z(\to \overline{q\bar{q}})H(\to \gamma\gamma)$ Training and testing strategy

Training and testing strategy

Two variables as inputs, so the number of qubit is 2 for the QSVM.

 \Box Then training with different dataset size like 50, 100, 150, 200, 500

The more clustered features the better the kernel.

 \Box Quantum kernel, slide 6, from 50 to 500 training dataset.

□ ROC with 50, 100, 150 events fort both training and testing dataset.

ROC for 200 and 500 events for both training and testing dataset.

CEPC: $e^+e^- \rightarrow Z(\rightarrow q\bar{q})H(\rightarrow \gamma\gamma)$ Checking the separation power

 \Box 1000 events (training = 500, testing = 500)

□ Unlike the TMVA, it's the separation margin between the classes.

- \Box Preliminary cut on di-muon invariant mass $80 < M_{\mu\mu} < 100 \text{ GeV}$
- □ 837 background and 3263 signal events
- \Box Taking the half from each data set for training and testing.

CEPC: $e^+e^- \rightarrow Z(\rightarrow \mu^-\mu^+)H(\rightarrow \nu\nu qq)$ Training and testing output

Abdualazem | Application of quantum computing at Higgs measurement

LHC: (VBF) $H \rightarrow \gamma \gamma$ Training and testing strategy

16

Training and testing strategy

□ Six variables as inputs, so the number of qubit is 6 for the QSVM.

□ Then training with different dataset size like 50, 100, 150, 200, 500

Abdualazem | Application of quantum computing at Higgs measurement

□ The more clustered features the better the kernel.

 $\hfill\square$ Quantum kernel, slide 6, from 50 to 500 training dataset.

□ ROC with 50, 100, 150 events fort both training and testing dataset.

□ ROC for 200 and 500 events for both training and testing dataset.

 \Box 1000 events (training = 500, testing = 500)

 $\hfill\square$ Unlike the TMVA, it's the separation margin between the classes.

LHC: (VBF) $H \rightarrow \gamma \gamma$ SVM with more stats

21

 \Box 20k events (training = 10k, testing = 10k)

Summary

QSMV and SVM are compared using few events up to 500 using the qsam simulator:

- Using 2 qubits $e^+e^- \rightarrow ZH \rightarrow \gamma\gamma q\bar{q}$ (CEPC)
- Using 6 qubits $pp \rightarrow H \rightarrow \gamma \gamma$ (LHC)
- \Box CEPC: $e^+e^- \rightarrow Z(\rightarrow \mu^-\mu^+)H(\rightarrow \nu\nu qq)$ using VQA.

U We test the performance of QSVM and SVM using ROCs and SB separation.

The computational is time expensive specially when running locally.

TO DO . . .

- Optimizing QSVM, SVM and QVA for better results.
- Train more events after setting the framework in the server.
- Train and test the same algorithm in real IBM quantum computer.

 $\hfill \square$ We are open to any comments and suggestions as we still learning.

Thank you!

Additional slides

24

□ Commonly used single- and multi-qubit quantum gates