Higgs Measurements @ CEPC and Its Implication on 2HDM

Shufang Su • U. of Arizona

CEPC Workshop Yangzhou April 14-17, 2021

J. Gu, H. Li, Z. Liu, W. Su, 1709.06103 N. Chen, T. Han, SS, W. Su, Y. Wu, 1808.02037 N. Chen, T. Han, S. Li, SS, W. Su, Y. Wu, 1912.01431 T. Han, S. Li, SS, W. Su, Y. Wu, 2008.05492

Outline

- Higgs precision measurements
- 🖗 Global fit framework
- Extended Higgs Sector: 2HDM
 - Tree vs Loop
 - Degenerate vs. Non-degenerate
 - Higgs vs. Z-pole
- Distinguish different types of 2HDMs new
- Sonclusion

LHC: 13 TeV

CMS-PAS-HIG-17-031

LHC: 14 TeV, 300 fb⁻¹, 3000 fb⁻¹

CEPC / FCC / ILC

collider	CEPC	F	FCC-ee			ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	$365{ m GeV}$		$250{ m GeV}$	350	GeV	$500{ m GeV}$				
$\int \mathcal{L} dt$	5.6 ab^{-1}	$5 {\rm ~ab^{-1}}$	1.5 a	ab^{-1}	2 ab^{-1}	200	fb^{-1}	4 ab^{-1}				
production	Zh	Zh	Zh	$\nu \bar{\nu} h$	Zh	Zh	$ u \overline{ u} h $	Zh	$ u \overline{ u} h $			
$\Delta \sigma / \sigma$	0.5%	0.5%	0.9% –		0.71%	2.0%	_	1.05	_			
decay			$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$									
$h o b \overline{b}$	0.27%	0.3%	0.5%	0.9%	0.46%	1.7%	2.0%	0.63%	0.23%			
$h \to c\bar{c}$	3.3%	2.2%	6.5%	10%	2.9%	12.3%	21.2%	4.5%	2.2%			
h ightarrow gg	1.3%	1.9%	3.5%	4.5%	2.5%	9.4%	8.6%	3.8%	1.5%			
$h \to WW^*$	1.0%	1.2%	2.6%	3.0%	1.6%	6.3%	6.4%	1.9%	0.85%			
$h \to \tau^+ \tau^-$	0.8%	0.9%	1.8%	8.0%	1.1%	4.5%	4.5% 17.9%		2.5%			
$h \rightarrow ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0%	22.4%	8.8%	3.0%			
$h ightarrow \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6%	50.3%	12.0%	6.8%			
$h \to \mu^+ \mu^-$	17%	19%	40%		25.5%	97.3%	178.9%	30.0%	25.0%			
$(\nu\bar{\nu})h o b\bar{b}$	2.8%	3.1%	_	_	3.7%	_	—	_	_			

S. Su CEPC-CDR, FCC Physics Opportunities, ILC 1903.01629.

CEPC / FCC / ILC

collider	CEPC	FCC-ee			ILC						
\sqrt{s}	$240{ m GeV}$	$240{ m GeV}$	365	$365{ m GeV}$		350	GeV	$500{ m GeV}$			
$\int \mathcal{L} dt$	5.6 ab^{-1}	$5 {\rm ~ab^{-1}}$	$1.5 {\rm ~ab^{-1}}$		2 ab^{-1}	200	fb^{-1}	$4 {\rm ~ab^{-1}}$			
production	Zh	Zh	Zh	$ u \bar{ u} h$	Zh	Zh	$ u ar{ u} h$	Zh	$ u \overline{ u} h$		
$\Delta\sigma/\sigma$	0.5%	0.5%	0.9%	0.9% –		2.0% –		1.05	_		
decay				$\Delta(\sigma \cdot$	$BR)/(\sigma \cdot R)$	BR)					
$h \to b\bar{b}$	0.27%	0.3%	0.5%	0.9%	0.46%	1.7%	2.0%	0.63%	0.23%		
$h \to c \bar{c}$	3.3%	2.2%	6.5%	6.5% 10%		12.3%	21.2%	4.5%	2.2%		
h ightarrow gg	1.3%	1.9%	3.5%	4.5%	2.5%	9.4%	9.4% 8.6%		1.5%		
$h \to WW^*$	1.0%	1.2%	2.6%	3.0%	1.6%	6.3%	6.4%	1.9%	0.85%		
$h \to \tau^+ \tau^-$	0.8%	0.9%	1.8%	8.0%	1.1%	4.5%	4.5% 17.9%		2.5%		
$h ightarrow ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0% 22.4%		8.8%	3.0%		
$h ightarrow \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6% $50.3%$		12.0%	6.8%		
$h o \mu^+ \mu^-$	17%	19%	40%	_	25.5%	97.3%	97.3% 178.9%		25.0%		
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%	_	_	3.7%	_	_	_	_		
						•		•	•		

S. Su CEPC-CDR, FCC Physics Opportunities, ILC 1903.01629.

Kappa framework and EFT Framework

Kappa Framework and EFT Framework

limitations of model-independent approaches

- large level of degeneracy parameter space for specific model much smaller
- correlation matrix often not provided over conservative estimation when not include correlation
- assumptions and simplifications may not be valid for a particular model

• Two Higgs Doublet Model (CP-conserving)

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix}$$

$$v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2}$$

$$\tan \beta = v_{u}/v_{d}$$

$$\begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad \begin{array}{c} A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} = -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{pmatrix}$$

after EWSB, 5 physical Higgses CP-even Higgses: h⁰, H⁰ , CP-odd Higgs: A⁰, Charged Higgses: H[±]

• h⁰/H⁰ VV coupling
$$g_{H^0VV} = \frac{m_V^2}{v} \cos(\beta - \alpha), \quad g_{h^0VV} = \frac{m_V^2}{v} \sin(\beta - \alpha).$$

alignment limit: $\cos(\beta - \alpha) = 0$, h^o is the SM Higgs with SM couplings. S. Su 10

2HDM parameters

	ф 1	ф 2
Type I	u,d,l	
Type II	u	d,l
lepton-specific	u,d	L
flipped	u,l	d

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin\alpha/\cos\beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

• parameters (CP-conserving, flavor limit, Z₂ symmetry)

	Φ 1	ф 2	
Type I	u,d,l		
Type II	u	d,I	
lepton-specific	u,d	I	
flipped	u,l	d	

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

• parameters (CP-conserving, flavor limit, Z₂ symmetry)

Tree-level 2HDM fit

2HDM, LHC/CEPC fit

Tree-level 2HDM fit

2HDM, LHC fit

S. Su

13

2HDM: Tree + Loop

2HDM: Loop in the Alignment Limit

Direct Search of Heavy Higgses @ 100 pp

Z-pole precision

Observables	FCC-ee	CEPC	ILC
$\delta m_h \; [\text{GeV}]$	1.0×10^{-2}	$5.9 imes 10^{-3}$	1.5×10^{-2}
$\delta lpha_{ m had}$	3.8×10^{-5} *	4.7×10^{-5}	3.8×10^{-5} *
$\delta m_Z \; [\text{GeV}]$	$1.0 imes 10^{-4}$	5.0×10^{-4}	$2.1 imes 10^{-3}$
$\delta m_t \; [{ m GeV}]$	$2.0 imes 10^{-2}$	$6.0 imes 10^{-1}$	$1.7 imes 10^{-2}$
$\delta m_W \; [\text{GeV}]$	$7.0 imes 10^{-4}$	1.0×10^{-3}	$2.5 imes 10^{-3}$
$\delta\Gamma_W$ [GeV]	$1.5 imes 10^{-3}$	2.8×10^{-3}	$5.0 imes 10^{-3}$
$\delta\Gamma_Z \; [\text{GeV}]$	$1.0 imes 10^{-4}$	$5.0 imes 10^{-4}$	$7.0 imes 10^{-4}$
$\delta A_b^{ m FB}$	$3.0 imes 10^{-4}$	1.0×10^{-4}	1.6×10^{-3} *
$\delta A_c^{ m FB}$	$5.9 imes 10^{-4}$	2.2×10^{-4}	3.5×10^{-3} *
$\delta A_\ell^{ m FB}$	$9.0 imes 10^{-6}$	$5.0 imes 10^{-5}$	1.0×10^{-3} *
δR_b	$6.0 imes 10^{-5}$	4.3×10^{-5}	$1.5 imes 10^{-4}$
δR_c	$1.7 imes 10^{-4}$	1.7×10^{-4}	5.2×10^{-4}
δR_ℓ	1.0×10^{-3}	2.1×10^{-3}	4.0×10^{-3}
$\delta \sigma_{\rm had} \ [{\rm nb}]$	4.0×10^{-3}	5.0×10^{-3}	3.7×10^{-2} *

	Current				CEPC FCC-ee					ILC						
	σ		correla	tion	σ		correla	tion	σ		correla	tion	σ		correla	tion
	0	S	T	U	(10^{-2})	S	Т	U	(10^{-2})	S	T	U	(10^{-2})	S	Т	U
S	0.04 ± 0.11	1	0.92	-0.68	1.82	1	0.9963	-0.9745	0.370	1	0.9898	-0.8394	2.57	1	0.9947	-0.9431
T	0.09 ± 0.14	-	1	-0.87	2.56	-	1	-0.9844	0.514	_	1	-0.8636	3.59	_	1	-0.9569
U	-0.02 ± 0.11	-	_	1	1.83	-	—	1	0.416	—	_	1	2.64	_	—	1

Complementary to Zpole precision

Different Higgs Factories

Different Higgs Factories

Distinguish different types of 2HDMs

20

Distinguish different types of 2HDMs

Conclusion

- Higgs factory reach impressive precision Ş
- Ş Kappa-scheme/EFT scheme/model specific fit
- Ş indirect constraints on new physics models
- Ş complementary to Zpole precision program
- Ş complementary to direct search @ 100 TeV pp
- Ş distinguish different types of 2HDMs

0.15

CEPC

HL-LHC

0.2

2/3

0.3

2HDM: Loop in the Alignment Limit

• theoretical constraints

Type-I 2HDM: non-degenerate

$$\Delta m_a = m_A - m_H, \ \Delta m_c = m_{H^{\pm}} - m_H$$

Complementary to Zpole precision

26

Different Higgs Factories

Different Higgs Factories

