

CEPC Workshop Status and Outlook of H->bb/cc/gg Analysis

Yu Bai (from Southeast University, Nanjing) On Behalf of CEPC Physics-Software Study Group April 14, 2021

Why H->bb/cc/gg is important?

A measurement on the couplings between Higgs and quarks will decode the origin of mass in great confidence

Current Status

H->bb/cc/gg is expected to be 57%/9%/3%

NOT bad with a 125 GeV Higgs mass

But that's not an easy task for our LHC colleges!

Direct H->bb measurement

- Observation of H->bb and VH production by ATLAS Collaboration, <u>Phys.Lett.B 786 (2018) 59</u>
- Observation of Higgs boson decay to bottom quarks by CMS Collaboration, <u>Phys.Rev.Lett (2018) 121801</u>

The H->bb signal strength was measured with precision around 20%, consisted with SM prediction

Direct H->cc measurement:

 Search for the decay of the Higgs boson to Charm Quarks with the ATLAS Experiment <u>Phys. Rev. Lett (2018), 211802</u>

A 95% CL upper limit set at about signal strength = 100

Gluon-gluon fusion Analysis

- <u>H->ττ in ATLAS</u>
- <u>H->WW in ATLAS</u>
- <u>H-> ττ in CMS</u>
- <u>H->γγ in CMS</u>

Uncertainty of O(10%)

Review of Previous Study

Study based on pre-CDR set up, using full simulated sample with sqrt(s)=250 GeV and old geometry (some extrapolate to sqrt(s) = 240 GeV)

H->bb/cc/gg at CEPC

Analysis Strategy

Dominant Backgrounds include the ZZ/WW events with same final states

Event Selection

recoil mass is the crucial variable to distinguish signal and background

	signal	Signal eff	hiqgs bkg	non-higgs bkg
ee channel	9.15k	52.6%	1.10k	6.15k
<i>uu</i> channel	12.8k	63.9%	1.48k	5.29k
ννΗ				

Cut efficiencies and optimal cut value check for classifier: BDT Signal purity xb / Nb (N/I) Signal (training sample Background (trai Efficiency (Purity) 0.6 events the maximum S/VS+B 28.96 when cutting at 0.01 -0.4 -0.2 0.2 0.4 -0.6 -0.4 -0.2 0.2 0.4 BDT response Cut value applied on BDT output **BDT** variable construct from nPFO, visible

energy $\cos \theta_{ii}$ and $\sin \theta_{ii}$

qqΗ

Mass χ^2 with different hypothesis are combined to reject ZZ/WW events

qqΗ

signal	Sign al eff	higgs bkg	4f-hadronic	qq	4f- semilept
211.2k	42.8%	32.6k	1.08M	405.6k	0.58k

$\nu\nu$ H

signal	Signal eff	higgs bkg	non-higgs bkg
85.8k	49.2%	1.96k	22.88k

7

Flavor Tagging and Flavor template

Flavor tagging performance

$$L_{qq} = \frac{qq \ pair}{qq \ pair \ + \ neither \ is \ q} = \frac{x_q^1 \ x_q^2}{x_q^1 x_q^2 + (1 - x_q^1)(1 - x_q^1)} \ (qq = bb, cc)$$

 4 categories of events according to the soft-leptons and vertices multiplicity

GBDT with tagging-sensitive variables method applied to each category

The performance of FT ensures the goal of precision

Processes with different flavor components can be separated by template fit

Template-Recoil Mass Combined Fit

Assuming lepton pair's recoil mass and jet flavor are independent in signal

 $\mathrm{PDF}^{3D}(X_B, X_C, M_{\mathrm{recoil}}) = \mathrm{PDF}^{flavor}(X_B, X_C) \times \mathrm{PDF}^{\mathrm{recoil_mass}}(M_{\mathrm{recoil}})$

- The shape parameter of recoil mass in signal and dominate background are float in the fit
- Reduce the dependency to the MC prediction
- Effects of systematic uncertainty also considered

Current Results

Combination of the 4 channels:

Statistic precision of σ (ZH)*Br(H->bb/cc/gg) is 0.3% 3.3% and 1.3%

Consistent with the goal expected in pre-CDR with full simulation samples

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b \bar{b}$	0.28%	0.57%
$H \to c \bar{c}$	2.2%	2.3%
$H \to gg$	1.6%	1.7%

IIH with 3D fit and systematic uncertainties considered:

	$\mu^+\mu^-H$			e^+e^-H		
	$H \rightarrow b \bar{b}$	$H \mathop{\rightarrow} c \bar{c}$	$H \rightarrow gg$	$H \rightarrow b \bar{b}$	$H \mathop{\rightarrow} c \bar{c}$	$H \mathop{\rightarrow} gg$
Statistic Uncertainty	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%
Fixed Background	-0.2%	+4.1%	7.6%	-0.2%	+4.1%	7.6%
Fixed Dackground	+0.1%	-4.2%		+0.1%	-4.2%	
Event Selection	+0.7%	+0.4%	+0.7%	+0.7%	+0.4%	+0.7%
Event Selection	-0.2%	-1.1%	-1.7%	-0.2%	-1.1%	-1.7%
Flavor Tagging	-0.4%	+3.7%	+0.2%	-0.4%	+3.7%	+0.2%
Flavor Tagging	+0.2%	-5.0%	-0.7%	+0.2%	-5.0%	-0.7%
Non uniformity		< 0.1%			< 0.1%	
Combined Systematic Uncentainty	+0.7%	+5.5%	+7.6%	+0.7%	+5.5%	+7.6%
	-0.5%	-6.6%	-7.8%	-0.5%	-6.6%	-7.8%

Table 2. Uncertainties of $H \to b\bar{b}$, $H \to c\bar{c}$ and $H \to gg$

Analysis with more reliable approaches. Systematic uncertainties considered.

Study on New Data Sets

Outlook of New Data Sets

- Full simulation events with $\sqrt{s} = 240$ GeV and new geometry
- Much larger statistics
- High performance PID based on LICH
- So far only IIH channel are studied
 - Only consider Higgs and irreducible backgrounds

Soft lepton treatment

	H->bb		H->cc		H->gg	
	Old	New	Old	New	Old	New
Soft muon	0.40%	0.87%	0.96%	0.15%	0.03%	0.06%
Soft Electron	0.41%	1.99%	1.43%	2.22%	0.08%	2.19%

- These leptons are here due to heavy flavor hadron decay or fake PID
- They background to the analysis

Removal of these leptons can cause the drop in efficiency

Lepton Pair Selection

- At least one pair of $\mu^+\mu^-$ or e^+e^-
- If there are additional muon/electron in $\mu^+\mu^-H$ or e^+e^-H channel:
 - Reject the pair which is out of recoil mass and Z mass window
 - The unpaired lepton should be close to a jet $\Delta \theta_{l,jet} < 0.5$
 - Jets absorb the closet unpaired leptons (in 4-momentum)

Lepton Pair Selection

Most of unpaired Leptons are from jets

Template Fit

- Signal Recoil line shape: Crystal ball function + exponential tail
- Background line shape: First order Chebychev polynomial (each flavor has different shape parameters)
- All the line shape parameters are float in the fit, as as event yields (Expect H->ww/ZZ)

Signal Line Shape of lepton recoil system mass: µµH

Signal Recoil Mass: Described by a Crystal ball function + double sided exponential Head

Signal Line Shape of lepton recoil system mass: µµH

Signal Recoil Mass: Described by a Crystal ball function + double sided exponential Head

Flavor Template

Results of Template Fit: µµH

- Good fit quality
- Slightly higher uncertainty than that in previous study

Plan of Future

What can we learned from the previous analysis, and in which way we can move forward?

H->ww/zz and Hadronic Final states Separation

The event yields of H->ww/zz are fixed in the fit. What happened if we make it float?

Signal Variable	Fitted Value
μ _σ (H->bb)	0.978±0.017
μ _σ (H->cc)	0.855±0.162
μ _σ (H->gg)	0.851±0.169
а	-0.970±0.032
n	0.990±0.034
sigma	0.268±0.006
mean	125.212±0.006

Significant deteriorate in H->cc/gg

Flavor Template

We cannot distinguish H->ww/zz just by flavor

Energy flow + Deep Set To Classify hadronic FS

3 Category: H->bb/cc/gg

- Use information of 4-momentum, charge and impact parameter of particles in jets, full simulation
- Results seems promising

Energy flow + Deep Set To Classify hadronic FS

4 category : H->bb/cc/gg/ww(hadronic only)

- Use information of 4-momentum, charge and impact parameter of particles in jets, full simulation
- Results seems promising, but LOTS of things to understand

Jet Flavor Substructure

Due to g->bb splitting

- The heavy flavor quark from gluon splitting tend to be close to each other
- The distribution of heavy flavor components in jets are signature of these events
- Validated in MC truth level
- Interesting in QCD measurement, precision Higgs measurement or H->bb CP phase (interference in small angle)

Heavy Flavor Components in Jet Substrue

- Clustering the have flavor components in truth level by ee-kt algorithm
- Significant difference between H->gg->QQ+g and H->QQ
- Working in reconstructed level now

Lepton Reconstruction with FSR

- Affect on lepton energy/momentum, lepton mass and lepton recoil system mass spectrum
- Affect on the lepton isolation
 - Lower lepton efficiency
- Affect on jet clustering
 - Photons clustered into jets
- Maybe Energy flow network is helpful ?

Summary

- Higgs -> bb/cc/gg has been explored with full simulation sample in most of the Higgs production mode in CDR stage
- Now the ZH-> II+bb/cc/gg has with 240 GeV full simulation datasets verify the capability of Higgs precision measurement in CEPC
- New result has been improved in lepton pair selection, and modeling of lepton pair recoil system mass
- We are developing method to distinguish different hadronic Higgs decay, based on energy flow and deep set method
 - Hopefully these method can be applied to vvH and qqH bkg/sig speration
 - Hopefully these method can be used to reconstruct electrons by absorbing FS radiations
- We are developing method to not only tag heavy flavor jets, but heavy flavor sub structure in jets

Shall we left all the work to machine?

Thank You!

Backup

Full Result of mumuH Template fit

COVA	RIANCE MATRIX	CALCULATED SU	CCESSFULLY			
FCN=	-311062 FROM	HESSE STATI	US=0K	229 CALLS	2078 TOT	AL
		EDM=0.03139	7 STRATEGY=	1 ERROR	MATRIX ACCURAT	Ε
EXT	PARAMETER			INTERNAL	INTERNAL	
NO.	NAME	VALUE	ERROR	STEP SIZE	VALUE	
100	С	2.84275e-05	1.49011e-06	2.11406e-04	2.84275e-05	
2	a	-9.84678e-01	2.91026e-02	4.16962e-04	-9.86277e-02	
3	a1	-4.99944e-01	2.94977e-02	1.31093e-01	-1.58570e+00	
4	a2	-3.45382e-01	4.72285e-02	4.88108e-02	-7.62545e-01	
5	a3	-4.08923e-01	2.13520e-02	2.78585e-02	-9.57657e-01	
6	mean	1.25214e+02	5.38449e-03	1.64950e-03	1.26795e-01	
¹ 7	n	9.74954e-01	2.68661e-02	2.76803e-03	3.22181e-01	
1 8	nHbb	1.25347e+04	1.55693e+02	4.89837e-03	2.56230e-01	
;19	nHcc	5.99540e+02	6.77704e+01	9.54471e-03	-1.07645e+00	
e 10	nHgg	1.77212e+03	1.04261e+02	1.41321e-02	-2.95700e-01	
11	nsig	9.70863e-01	4.50142e-03	1.40460e-02	7.87553e-01	
eg2)	nzzsl_mu_bb	2.90810e+03	1.19358e+02	9.16978e-03	-1.70102e-01	
13	nzzsl_mu_cc	2.34943e+03	7.76258e+01	7.91869e-03	-3.35165e-01	
e 1 4	nzzsl_mu_uds	s 7.62886e+03	1.14594e+02	3.98275e-0	3 -2.39458e-01	
15	peak	1.24460e+02	3.91876e-02	1.86183e-02	-7.90802e-01	
16	sigma	2.69174e-01	5.81205e-03	4.12916e-03	-6.15130e-01	
117	tau ^s vim nt	4.04828e-01	7.33186e-02	2.42746e-02	-8.42000e-01	
iggs	baiy\$ root -	L E	RR DEF= 0.5			
EXTE	RNAL ERROR MA	ATRIX. NDIM=	25 NPAR= 3	17 ERR DEF	=0.5	
ELEM	ENTS ABOVE DI	AGONAL ARE NOT	PRINTED.			