

qqHµµ Analysis in the CEPC Experiment

Yanping Huang¹, Shan Jin², Gang Li¹, Qi Liu³, <u>Kunlin Ran¹</u>, Manqi Ruan¹ ¹IHEP, CAS ²Nanjing University ³Wuhan University

Introduction

- $H \rightarrow \mu\mu$ is important for probing the Higgs Yukawa couplings
 - The interactions of Higgs to the third generation charged fermions have been observed in LHC experiments [JHEP 08 (2016) 045]; While the Higgs couplings to other generation fermions haven't
 - $H \rightarrow \mu\mu$ offers the best opportunity to measure Higgs Yukawa couplings to the second generation fermions
- LHC result
 - In the **ATLAS** experiment, the obs. (exp.) significance of the $H \rightarrow \mu\mu$ process is 2.0 σ (1.7 σ) with **139 fb⁻¹ data** [Phys. Lett. B 812 (2021) 135980]
 - In the CMS experiment, the obs. (exp.) significance is 3.0σ (2.5σ) with 137 fb⁻¹ data [JHEP 01 (2021) 148]

In the projections with the **ATLAS** detector at **HL-LHC (3000 fb⁻¹)**, the exp. precision of $B(H \rightarrow \mu\mu)$ is **14%** [ATL-PHYS-PUB-2018-054]

$ee \rightarrow Z(qq)H(\mu\mu)$ study in the CEPC

- With electron-positron colliders, we can gain much higher significance due to extremely clean background
- Focus on $ee \rightarrow Z(qq)H(\mu\mu)$ channel in the CEPC experiment
- Previous publication [10.1088/1674-1137/42/5/053001] gave counted significance at [124.3, 125.2] GeV: 10.8 σ , with the precision of ~17%

- While the measurement is not perfect enough
 - The simulation didn't consider the Z boson width
 - Only counting significance was presented
- Try to improve
 - Develop new selection criterial by keeping most signals and suppressing background
 - Use profile likelihood method to estimate significance
 - Further make event categories by applying MVA method

Detector and samples

- CEPC detector: v4, $\sqrt{s} = 240$ GeV, 3 T
- Sample
 - PS. The analysis was done with the **obsolete int. lumi of 5 ab**⁻¹, while we'll show the statistical results with the lumi scaling to **5.6 ab**⁻¹ [arXiv:1811.10545]
 - DST data: slimmed reconstruction samples without hits
 - Signal: $Z(\rightarrow qq)H, H \rightarrow \mu\mu$
 - $m_H = 125 \text{ GeV}$
 - $\sigma(ee \rightarrow Z(\rightarrow qq)H)$: 136.81 fb, $B(H \rightarrow \mu\mu)$: 2.176E-04
 - Stat: ~100M
 - Background

Bkg.	Single W	Single Z	WW	ZZ	Z or W	2f
Stat.	~18 M	~8 M	~46 M	~6 M	~20 M	~28 M

 With an int. lumi. of 5.6 ab⁻¹, the exp. bkg yield / statistics are ~1, besides the 2 fermions (~30)

Event selections

• Taking into account both signal efficiency and signal-to-noise-ratio, event selections are finalized (detailed studies can be found in the backup)

Cut	Purpose
$N_{\mu}^{+} > 0$, $N_{\mu}^{-} > 0$	$H ightarrow \mu \mu$ requires 2 opposite charged muons
$115 < m_{\mu\mu} < 135 GeV$	$m_{\mu\mu}$ is closes to the m_H (125 GeV)
$25 < N_{particle} < 115$	di-jet system requires more objects than all lepton final stats
$55 < m_{qq} < 125 GeV$	m_{qq} is closes to the m_Z (91.2 GeV)
$p_{qq\mu\mu} < 32 GeV$,	The 4 momentum of the $qq\mu\mu$ system is
$195 < E_{qq\mu\mu} < 265 GeV$	closes to (0, 0, 0, \sqrt{s}), $\sqrt{s}=240$ GeV
$35 < E_{\mu}^{-} < 100 GeV$,	To suppress WW bkg.
$35 < \dot{E_{\mu}^{+}} < 100 GeV$	
$18 < p_{\mu\mu} < 72 GeV$	To suppress hadronic bkg. with muons in jet clusters
$-20 < p_x^{miss}$, $p_y^{miss} < 20$ GeV,	To suppress WW bkg. with neutrino decays
$\Delta_{\mu^- q q, \mu^+}$, $\Delta_{\mu^+ q q, \mu^-} > 2.5$	

- Δ means the **solid angle** of the 2 objects (systems)
- We previously required electron selections, which could largely suppress the background (talk); But there're mis-charge and truth match issues in electrons observed in the bkg. MC. In the end we removed all electron cuts

N_e performances in the sig/bkg MC

- We used reco-PID=11 or -11 (getType() from ReconstructedParticle) to identify electrons/positrons in the MC
- N_e distributions between sig. and ZZ bkg.
 - The distributions were performed after the event selections without electron cuts (talk)

- In the phase space of the signal process, electrons can be radiated from jets
- It's strange that
 - 1. Why sig and bkg MC behave different in N_{e^-} ? Why N_{e^-} and N_{e^+} are different in the bkg MC?
 - 2. Why there're so many electrons in the bkg?

Two steps to identify electrons/positrons

- To make validation, we tried another way to identify the electrons/positrons
 - 1. Select $(N_{e^-} + N_{e^+})$ by requiring **|reco-PID|=11**
 - 2. Separate the electrons/positrons by their charge (getCharge() from ReconstructedParticle)
- The sum number of electrons, positrons in the 2 steps method is equal to the one step method (previous slide)
- Perform N_e distributions

- The reason N_e- and N_e+ behave different in the bkg MC is due to the charge misidentification in the PID
- Still 2 questions need to be understood
 - 1. Why sig and bkg MC behave different?
 - 2. Why there're so many electrons in the bkg?

Truth match efficiency

- We decided to look after the truth information of electrons
- In the RecoMCTruthLink collection, reco-particle can be linked to a truth-particle, estimate the truth-match efficiency in the sig/bkg MC

numbers	qqh_e2e2		ZZ			ww			
	reco	linked	eff	reco	linked	eff	reco	linked	eff
N_{e^-}	43106	31691	73.5%	39232	1599	4.07%	2425	71	4.07%
N_{e^+}	43801	30962	70.7%	39699	3207	8.07%	2488	228	9.164%

- The truth match efficiencies of bkg MC are small, thus many reco-electrons in the bkg are fake particles
- \Rightarrow That's why **the number of reco-electrons** in the **bkg MC** are greater than **sig**

• Since there're potential issues in the electron ID and truth match algorithms, we decided to **remove all electron cuts** in the analysis

Cut flow

After event selections, all other bkg. are excluded, except for semi-lep decay of ZZ/WW and 2 fermions

Cut	$H o \mu \mu$		ZZ	WW	2 <i>f</i>
	Event	Eff.	Event	Event	Event
Initial	148.849	1	5.70e+06	4.53e+07	7.15e+08
$N_{\mu}^{+} > 0, \; N_{\mu}^{-} > 0$	147.917	0.993	665833	948669	3.52e+06
$115 < m_{\mu\mu} < 135 GeV$	118.544	0.796	11062.9	2781.69	48700
$25 < N_{particle} < 115$	117.927	0.792	6175.83	2236.64	1328.93
$55 < m_{qq} < 125 GeV$	117.15	0.787	5616.92	1264.36	216.449
$p_{qq\mu\mu} < 32 GeV$,	116.522	0.783	5557.46	948.514	216.449
$195 < E_{qq\mu\mu} < 265 GeV$					
$35 < E_{\mu}^{-} < 100 GeV$,	116.263	0.781	5518.81	658.416	216.449
$35 < E_{\mu}^{+} < 100 GeV$					
$18 < p_{\mu\mu} < 72 GeV$	115.5	0.776	5428.63	654.455	54.1121
$-20 < p_x^{miss}$, $p_y^{miss} < 20$ GeV,	114.952	0.772	5402.87	359.406	54.1121
$\Delta_{\mu^- q q, \mu^+}$, $\Delta_{\mu^+ q q, \mu^-} > 2.5$					

• Signal efficiency: 77%

Bkg.	ZZ	WW	2f	
Fraction	93%	6%	1%	

$m_{\mu\mu}$ distribution after the event selections

• After the event selections, perform the $m_{\mu\mu}$ distribution

- *ZZ* background is **dominant**
- Estimate the **counting significance**: $\mathbf{Z} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)} = \mathbf{4}.9\sigma$, in the $m_{\mu\mu}$ region [124.1, 125.5] GeV (3σ width of the sig)
 - The resolution σ is obtained by fitting the sig MC with DSCB function, detailed in later slides

MVA optimizations

- Next to apply discriminant variables into MVA (BDTG) to optimize the signal
- Input discriminant variables: Δ_{q1,μ^-} , Δ_{q2,μ^+} , $\Delta_{\mu,\mu}$, $\cos \theta_{qq}$, $\cos \theta_{q2}$, m_{qq} , p_x^{q1} , p_y^{q2}

- The input variables are **optimized**:
- To not highly correlated with $m_{\mu\mu}$
- To have separation power between sig/bkg
- **Top rank** variable in the BDTG training: $\cos \theta_{q2}$

qqHm<u>umu</u>

BDTG

• After training, perform the **BDTG response**

- There is **overtraining** in the bkg. due to **poor statistics**
- The BDTG algorithm can't make deeper optimization with the same reason
- Scan the **significance VS BDTG** to find the optimal cut point to split events in 2 categories: **tight/loose**, to obtain the **maximum combined significance**: $Z = \sqrt{Z_{tight}^2 + Z_{loose}^2}$; Optimal cut point: 0.13
- In the **tight** category, the **bkg** components are almost **ZZ**, the WW and 2f are excluded

$m_{\mu\mu}$ in tight/loose categories

• Perform $m_{\gamma\gamma}$ between sig/bkg MC in 2 categories

Summarize the event yield and counting significance in each category

Category	$H ightarrow \mu \mu$	ZZ	WW	2 f	Significance
Tight	80.09	1770.72	3.36	0	5.0σ
Loose	48.66	4280.64	398.72	60.48	2.3σ
Combined	128.74	6051.36	402.08	60.48	5.5σ

• The **combined significance** $Z = 5.5\sigma$, which is 11% better than inclusive case

Signal modelling

• Fitting function: DSCB

•
$$f(t) = N \cdot \begin{cases} e^{-0.5t^2}, \ if \ -\alpha_{low} \le t \le \alpha_{high} \\ e^{-0.5\alpha_{low}^2} \left[\frac{\alpha_{low}}{n_{low}} \left(\frac{n_{low}}{\alpha_{low}} - \alpha_{low} - t \right) \right]^{-n_{low}}, \ if \ t < -\alpha_{low} \\ e^{-0.5\alpha_{high}^2} \left[\frac{\alpha_{high}}{n_{high}} \left(\frac{n_{high}}{\alpha_{high}} - \alpha_{high} + t \right) \right]^{-n_{high}}, \ if \ t > \alpha_{high} \end{cases}$$

•
$$t = (m_{\mu\mu} - \mu_{CB})/\sigma_{CB}$$

- DSCB shows great agreement with the sig. MC
- In fitting the final pseudo-data (sig. + bkg. MC), the parameters of the sig model are fixed from fitting the sig. MC alone

Background modelling

- Fitting function: second order Chebyshev polynomial
- $f(m_{\mu\mu}) = N \cdot [1 + a_0 m_{\mu\mu} + a_1 (2m_{\mu\mu}^2 1)]$

- Tested different functions for fitting the bkg: $\exp(-am_{\mu\mu})$, polynomials, etc
- Finally select the second order Chebyshev polynomial with the **best** χ^2
- In fitting the final pseudo-data (sig. + bkg. MC), the parameters of the bkg model are floated

Statistical method

- Make the pseudo-data with sig.+bkg. MC
- Apply the unbinnd **likelihood** fit on the $m_{\mu\mu}$ (observable), fit on all categories simultaneously
- $\mathcal{L} = \prod_{c} \left(\text{Pois}(n_c | \mu S_c + B_c) \prod_{1}^{n_c} \frac{\mu S_c f_{S,c} + B_c f_{B,c}}{\mu S_c + B_c} \right)$
- *c*: event category; *n_c*: event number in category *c*
- S_c: expected signal number in category c; B_c: expected background number in category c

• **POI:** signal strength
$$\mu = \frac{\sigma(Z(qq)H) \cdot B(H \to \mu\mu)}{(\sigma(Z(qq)H) \cdot B(H \to \mu\mu))_{SM}}$$

- Signal model *f*_s: DSCB; Bkg model *f*_B: Second order Chebyshev polynomials
- Also fit on the Asimov dataset to avoid statistical fluctuations
- Only statistical uncertainties are considered

Fit on the pseudo-data

• Simutaneous fit on $m_{\mu\mu}$ in 2 categories

- The fitted bkg. component (dashed blue curve) is lower than the bkg. MC (dashed pink curve) in the peak region, which is due to
 - Large statistical fluctuations in the bkg. MC
 - **Imperfect bkg. function** to model the MC bkg. shape (can further study the bkg. model in the future if possible)
- Thus the fitted **sig.** is **over-estimated**, perform the **Asimov** fit to avoid fluctuations and give the **nominal results**

Asimov results

• Fit on the Asimov dataset

• $\mu = 1.00 \pm 0.18$, significance: 6.4 σ

Results by adding m_{qq}^{recoil} in categorization

- In the analysis, we didn't use the m_{qq}^{recoil} for event selections and category optimizations
- After the nominal selections, hard to determine the cut point on m^{recoil} to separate sig./bkg.
 events a m_recoil_qq;m_mumu

• In addition, there is large linear correlation between $m_{\mu\mu}$ and m_{qq}^{recoil} in the bkg. (42%); If we put the variable in the MVA training, we'll largely change the mass shape

Exp. results by adding m_{qq}^{recoil}

- Re-define event categories (tight/loose) with the BDTG trained with an additional m_{qq}^{recoil}
- Estimate the **exp. signal strength** by fitting on the Asimov dataset

- $\mu = 1.00^{+0.18}_{-0.17}$, significance: 6.5 σ
- Compared with the **nominal case (6.4** σ **),** the improvement isn't sizable

Momentum smearing study

- To test the **performance** of the **CEPC detector**, we **smear the momentum** resolution of the muon ($\sigma = (p_{\mu}^{reco} p_{\mu}^{truth})/p_{\mu}^{truth}$) by 25%, 50% and 100%
 - $\sigma_{smear} = \sigma_{nom}(1+\delta)$
- Apply event selections, categorizations and sig./bkg. modelling based on the **smeared variables,** re-estimate **precision** and **significance** of the signal

Smearing	0 (nominal)	25%	50%	100%
μ	1.00 ± 0.18	$1.00\substack{+0.20\-0.19}$	$1.00\substack{+0.21 \\ -0.20}$	$1.00\substack{+0.23 \\ -0.22}$
Significance	6.4 <i>o</i>	5.8σ	5.3σ	4.8σ
Reduction in significance		-9%	-16%	-24%

 If the performance of the detector for calculating the resolution of the muon is 100% worse than the designed parameters, we'll have 24% reduction in the signal significance

Summary

- Studied $ee \rightarrow Z(qq)H(\mu\mu)$ in the CEPC experiment
 - Develop the **selection criteria** to select the $qqH\mu\mu$ sig.
 - After event selections, the sig. efficiency is 77%; the dominant background is ZZ to muons/jets
 - Apply the **BDTG method for categorization** to further improve the significance
 - Divide the events in 2 categories, the counting significance improved by 11% than the inclusive case
 - Choose DSCB as the sig. model and second order Chebyshev polynomial as the bkg. model for final statistical analysis
 - By simultaneously fitting on the $m_{\mu\mu}$ in 2 categories with the Asimov data, the **exp. precision is 18%**, with the **significance of 6.4** σ
 - In **bkg**. m_{qq}^{recoil} is largely **correlated** with $m_{\mu\mu}$ after selections (42%); The **mass** shape will be largely changed if adding the variable in the BDTG training
 - Besides, the improvement in significance isn't sizable ($6.4\sigma \rightarrow 6.5\sigma$)
 - To test the performance of the CEPC detector, the momentum resolution of the muon is smeared by 25%, 50% and 100%; In the worst case, the significance reduces by 24%

Backup

- All reconstructed visible objects are grouped as "particle"
- *N_{particle}* cut: di-jet system requires more objects
- Suppress background components with lepton final stats
 - Single Z to muons/electrons
 - ZZ/WW to muons/taus
 - 2 fermions (muons/taus)
- 4 momentum of all visible particles: *p_{particle}*;
 4 momentum of di-muon: *p_{μμ}*
- Didn't apply jet-cluster algorithm, while define di-jet system: $p_{qq} = p_{particle} p_{\mu\mu}$
- Since the dominant background would be Z(µµ)Z(qq) (see later), the rough definition of di-jet system makes sense for the specific channel
- *M_{qq}* cut: *M_{qq}* should be close to *M_Z* (91.2 GeV)

• $p_{qq\mu\mu}$ cut: $ee \rightarrow Z(qq)H(\mu\mu)$ system should has 4 momentum close to (0, 0, 0, \sqrt{s}), $\sqrt{s} = 240$ GeV

- E_{μ} cuts: To suppress WW background
 - WW to muon/jets
- $p_{\mu\mu}$ cut: To suppress hadronic background components with muons in jet clusters
 - Di-jet background
 - ZZ to taus/jets

$ee \rightarrow Z(qq)H(\mu\mu)$ study in the CEPC

- With electron-positron colliders, we can gain much higher significance due to extremely clean background
- Focus on $ee \rightarrow Z(qq)H(\mu\mu)$ channel in the CEPC experiment
- Previous publication [10.1088/1674-1137/42/5/053001] gave counted significance at [124.3, 125.2] GeV: 10.8 σ , with the precision of ~17%

- While the measurement is not perfect enough
 - The simulation didn't consider the Z boson width
 - A typo observed in the formula for calculating significance

$$\sqrt{2(s+b)\ln\left(1+\frac{s}{b}\right)-s} \Longrightarrow \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)}$$

- Try to improve
 - Develop new selection criterial by keeping most signals and suppressing background
 - Use profile likelihood method to estimate significance
 - Further make event categories by applying MVA method