Progress and planning of the Vertex detector

Zhijun Liang Institute of High Energy Physics, CAS

VERTEX DETECTOR FOR CEPC

- High precision vertex detector essential for $H \rightarrow bb/cc/gg$ and $H \rightarrow \tau\tau$
- Single point resolution < 3 μ m \rightarrow small pixel pitch, e.g. 16 μ m
- Material budget 0.15%X₀ per layer
- Power consumption: < 50 mW/cm²
- Fast readout time: <500ns @40MHz at Z pole
- Radiation tolerance (per year): 1 MRad & 2×10¹² 1 MeV n_{eq}/cm²

$$\sigma_{r\varphi} = 3 \,\mu m \oplus \frac{10 \,\mu m}{p(\text{GeV}) \cdot \sin^{3/2}\theta}$$

3

CMOS MONOLITHIC PIXEL SENSOR

- CMOS Monolithic pixel (CIS process or SOI process) is ideal for CEPC application
 - low material budget (can be thin down to 50μm)
- Hybrid pixel technology developed by ATLAS and CMS
 - Thickness of sensor is about 200~300 μm
 - Need to bump bonding with readout ASIC (ASIC thickness is about 300µm)
 - Material budget about silicon sensor is about 10 times larger than CIS process Hybrid pixel

Monolithic Pixels

CMOS MONOLITHIC PIXEL SENSOR

- The existing CMOS monolithic pixel sensors can't fully satisfy the requirement
- Major constraints for the CMOS sensor
 - Pixel size: Single point resolution < 3 μ m
 - <500ns deadtime @40MHz at Z pole
 - Radiation tolerance (per year): 1 MRad &2×10¹² 1 MeV n_{eq}/cm²

experiment	Chip	Resolution	Readout Speed	TID
ALICE	ALPIDE	\checkmark	Х	X (?)
ATLAS	Malta Monopix ATLASpix	Χ		\checkmark
Star	MIMOSA	\checkmark	X	X (?)

DEVELOPED CMOS PIXEL SENSOR PROTOTYPES FOR CEPC

Prototype	Pixel size (μm²)	Readout time	Pwer Consumption (mW/cm ²)	In-piel circuit	R/O architecture	Main goals	Status
JadePix1	33 × 33 16 × 16	~100 µs	~ 100	SF/amplifer, analog output	Rolling shutter	Sensor optimization	Lab. and beam test finished
JadePix2	22 × 22	~100 µs	< 100	amp., discriminator, binary output	Rolling shutter	Small pixel, Power < 100 mW/cm ²	functionality verified
MIC4	25 × 25	~10 µs	<26	Low power front-end, address encoder	Data-driven, Asynchronous	Small pixel, fast readout for ZH run	functionality verified
JadePix3	16 × 26 16 × 23	~10 µs	<26	Low power front-end, binary output	Rolling shutter with end of col. priority encoder	Small pixel, low power	Fabricated, Testing
Taichu-1	25×25	~50ns	50~100	binary output	Data-driven, Priority encoder	Full Functionalities Fast readout for Z pole	Fabricated, Testing
JadePix1 (IF	HEP) Jad	ePix2 (IHEP)	MIC4 (CCNU a	& IHEP) ² IHEP, CCNU,	JadePix3 Dalian Minzu Ur	IV., SDU IHEP, SDU, N	Pixel Array Periphery Taichu-1 IWPU, IFAE & CCN
3.9 × 7.9 m	1m² 3 ×	3.3 mm ²	3.2 × 3.7 mm	יין אר 6.	$1 \times 10.4 \text{ mm}^2$	5	$\times 5 \text{ mm}^2$

All prototypes in TowerJazz 180 nm CIS process

FUNDED BY **MOST** AND **IHEP**

FROM SENSOR TO VERTEX DETECTOR

- CMOS sensor R & D is the first step
- Detector layout optimization
- Ladder and vertex detector support structure R & D
- Detector assembly and Data acquisition system R & D

VERTEX DETECTOR PROTOTYPE

- Plan to build full size vertex detector prototype
 - Three double layer vertex detector
 - With Fractions of the modules will be installed
 - Supported by MOST , 12M RMB

	R (mm)	z (mm)	$ \cos heta $	
Layer 1	16	62.5	0.97	
Layer 2	18	62.5	0.96	
Layer 3	37	125.0	0.96	•
Layer 4	39	125.0	0.95	
Layer 5	58	125.0	0.91	
Layer 6	60	125.0	0.90	

Funded by MOST

Radiation Length by Component(Jinyu)

VERTEX DETECTOR PROTOTYPE: LADDER DESIGN

- First draft of CEPC module design:
 - Material budget can barely $0.15 \ \% X_0$ per layer
 - Need to be rigid in air cooling, Difficult to reduce material budget
 - First prototype of ladder support
 - 3 layer of carbon fiber, 0.15mm thick
 - 3 time thinner than conventional carbon fiber

VERTEX DETECTOR PROTOTYPE: LADDER DESIGN (2)

- Completed preliminary version of detector module (ladder) design
 - Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board
 - Sensors will be glued and wire bonded to the flexible PCB
 - Flexible PCB will be supported by carbon fiber support structure
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB Gantry automatic module assembly

	Achieved Thickness (µm)	Optimization goals (µm)
Polyimide	25	12
Adhesive	28	15
Plating Cu	17.8	17.8
kapton	50	50
Plating Cu	17.8	17.8
Adhesive	28	15
Polyimide	25	12

LADDER MECHANICAL TESTING

- Detailed designs of platform and tooling for different test.
 - Static (different support and load cases)
 - Vibration and cooling + pressed air (different cases):
 - > Measure Deformation, temperature, air speed, flow rate, etc.
 - \geq Goal: Measure vibration to $1\mu m$ level with air cooling with laser interferometer

DESIGN OF VERTEX DETECTOR PROTOTYPE INSTALLATION

- 64 ladders will be installed in vertex detector prototype
- Dedicated global detector support for whole vertex detector has been designed
- Installation tool and procedure has been designed
 Inner barrel and tooling

Middle barrel and tooling

PLAN FOR TESTBEAM

- Expect to perform beam test in DESY(3 7GeV electron beams)
 - IHEP test beam facility as backup plan (a few hundreds MeV electrons)
- Enclosure for detector with air cooling is developed for beam test
 - Beam is shooting at one sectors of vertex detectors

PLAN FOR TESTBEAM (2): NEW OPPORTUNITY AT BSRF

- New opportunity in Beijing Synchrotron Radiation Facility (BSRF)
 - High energy electron (1~2.5 GeV) leakage from BEPC
 - High trigger rate (up to 50Hz/cm²)
 - Can be used to vertex detector position resolution

		DESY	IHEP E3 beam	BSRF
	Momentum	1-6 GeV	<1 GeV secondary beam	1~2.5 GeV
	Particles	electrons	Protons/ Pions/ /Electrons	electrons
	Trigger rate	4000 Hz/cm ²	0.6 Hz/cm ²	~50 Hz/cm ²
年 X-射		光刻 WIA 生物大分子 WII 生物大分子 EPCII II I I NYA LYA LYA		Dipole field error Closed orbit Reference trajectory

SUMMARY

- Lots of R & D activities for CEPC vertex detector
- Sensor prototype has been fabricated and tested
 - More details in Wei and Yupeng's talks.
- Full-size three double layer vertex design prototype is under development
 - Ladder support has been designed and fabricated.
 - Global detector support for whole vertex detector has been designed
 - Plan for test beam has been presented

VERTEX DETECTOR PROTOTYPE

- IHEP has experience on building single-side modules
 - R & D module assembly scheme for double-side modules
- Collaboration with Livepool on detector support structure
 - New idea from Livepool of the ladder structure reinforcement.
 - Produce sample and test them in next step

Single-side HRCMOS pixel module for BESIII

Idea about the detector support structure

DETECTOR REQUIREMENT

- Requirements:
 - Constraints from physics (similar to LC more or less) From F. Bedeschi's talk in Last CEPC workshop

Physics process	Measurands	Detector subsystem	Performance requirement	From CDR
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker 2	$\Delta(1/p_T) = \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2}}$	$\overline{\theta}$ Too tight?
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H \to b \bar{b} / c \bar{c} / g g)$	Vertex 5	$\sigma_{r\phi} = \\ \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	Not enough?
$H \to q\bar{q}, WW^*, ZZ^*$	${\rm BR}(H\to q\bar{q},WW^*,ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E = 3 \sim 4\%$ at 100 GeV	Too tight?
$H\to\gamma\gamma\gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$	Not enough?

- Additional constraints
 - Excellent acceptance and luminosity control
 - PID & π^0 ID for HF/ τ physics
 - Low B field to avoid emittance blow up
 - Power pulsing not allowed

CEPC DETECTOR CONCEPTUAL DESIGNS

CEPC baseline detector (Inspired by ILD detector design)

Fcc-ee detector

(Franco Bedeschi 's talk in Fcc workshop)

D₀ (μm)

REQUIREMENT ON RADIATION HARDNESS

- Bunch spacing
 - Higgs: 680ns; W: 210ns; Z: 25ns
 - Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness : ~18 μ m
 - Pixel size : $25\mu m \times 25\mu m$

REQUIREMENT ON RADIATION HARDNESS

Radiation tolerance (per year): 1 MRad &2×10¹² 1 MeV n_{eq}/cm²

REQUIREMENT ON TIMING

From Auguste Besson's talk in Fcc workshop

REQUIREMENT ON TIMING

- Bunch crossing rate at Z pole: ~40MHz (every 25ns)
- Signal rate at Z pole is about 20kHz (about one event every 50µs)
- Time stamp resolution goal : 25ns (identify bunch in Z pole runs)
- \succ Readout time target: 10µs (CEPC pre-CDR) \rightarrow 100~500 ns (new goal for CEPC and Fcc-ee)
- > To avoid pileup of two Z events (<0.01%) and for Z event shape study

REQUIREMENT ON POWER CONSUMPTION AND COOLING

- > To reduce material budget, air cooling is prefer in lepton collider
- How much power consumption can air cooling handle ?
 - Most of us consider the upper limit is about 25mW/cm²
 - Star HFT detector managed to cool 150mW/cm²
 - One of the key is without endcap disk in Star detector
 - Air flow can be much larger (10m/s) without endcap

The STAR MAPS-based PiXeL Detector NIM, A 907 (2018) 60-80

VERTEX DETECTOR WITHOUT ENDCAP ?

Long barrel without endcap design can have good air cooling performance
 First design draft from Quan Ji

VERTEX DETECTOR WITHOUT ENDCAP ?

> Long barrel without endcap design can have good air cooling performance

1) Silicon Vertex Detector --- air cooling design

SUMMARY

- Requirement on vertex detector
 - Single point resolution < 3 μ m \rightarrow small pixel pitch, e.g. 16 μ m
 - Material budget $0.15\%X_0$ per layer \rightarrow thin & low power 50 mW/cm²
 - Detector occupancy below 0.5% @40MHz at Z pole → <500ns deadtime
 - Radiation tolerance (per year): 1 MRad &2×10¹² 1 MeV n_{eq}/cm²