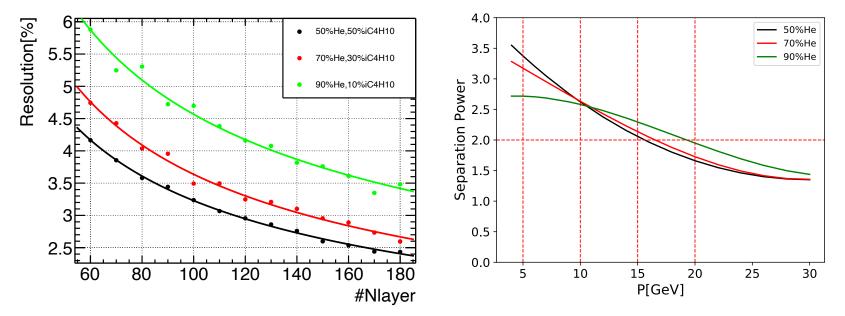
Drift Chamber layout with Garfield simulation

Shuiting Xin, Linghui Wu March 1.2021

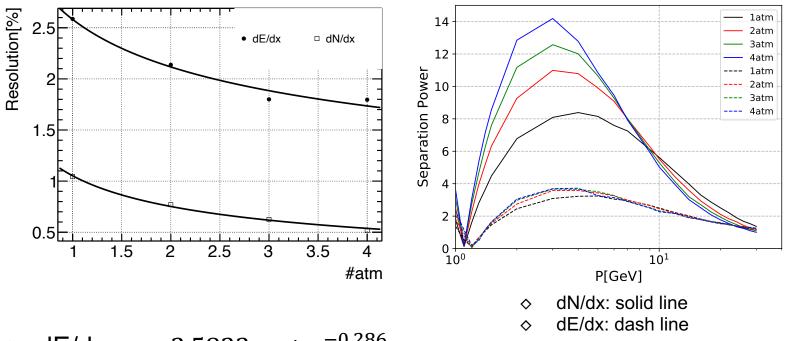
CEPC tracker layout meeting

Introduction


- * "physics requirement" for CEPC Drift Chamber:
 - ♦ 2sigma k/pi separation power at 20GeV
 - \diamond 2% resolution of dE/dx.

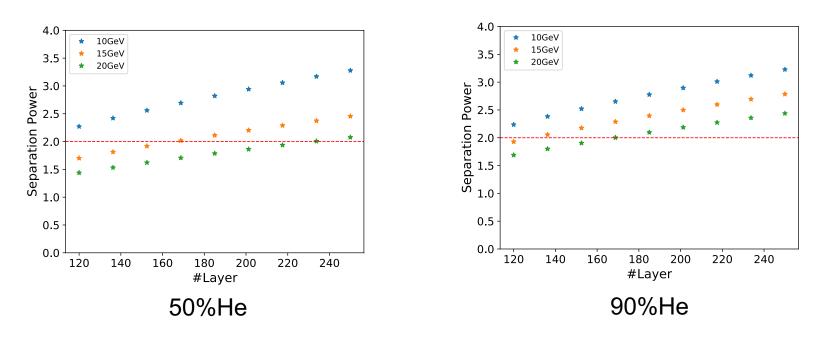
Optimization the layout from two aspects

- \diamond dE/dx
- $\diamond dN/dx$

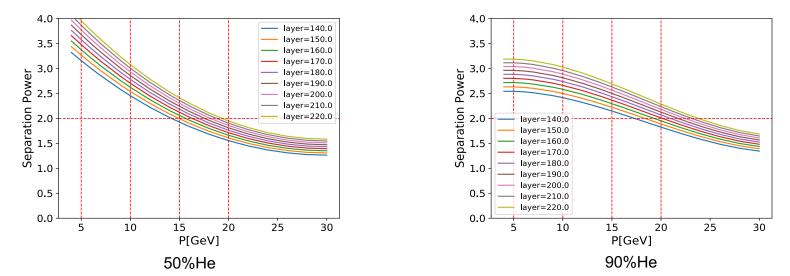

dE/dx vs #layer

♦ Smooth method is used : Fitting mean, sigma of k,pi energy loss to obtain separation curve. $\mu \sim constant, \sigma \sim 1/\sqrt{N}$

- ♦ 3 gas mixture -> no big difference between 50% and 70% in separation plot.
- \diamond 50%He and 90%He will be discussed in the following page.
- ♦ Above 10GeV, separation with 90%He is better than with 50%He.


dE/dx and dN/dx: Gas pressure

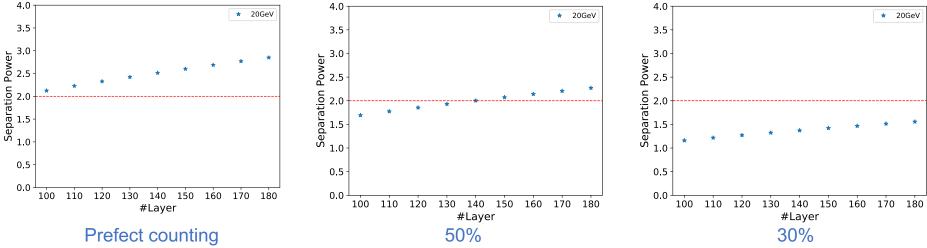
♦ dE/dx
$$\sigma = 2.5823 * atm^{-0.286}$$


- \diamond dN/dx $\sigma = 1.0524 * atm^{-0.48}$
- ♦ For both dE/dx and dN/dx, no significant improvement above 10GeV, 1 atm gas is enough.

dE/dx: Separation Limit

- \diamond To achieve 2 sigma k/pi separation at 20GeV:
 - ♦ 240 layers, 170 layers are needed with 50%He,90%He gas respectively.
- ♦ To achieve 2 sigma k/pi separation at 15GeV:
 - ♦ 170 layers, 140 layers are needed with 50%He,90%He gas respectively.

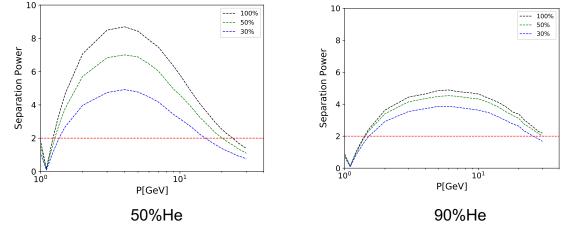
dE/dx: Separation vs different nlayers


Number of layers	Gas mixture	dE/dx resolution of 20GeV pion	Separation power of pi/k at different momentum			
			5GeV	10GeV	15GeV	20GeV
N = 150	He 50%	2.53%	3.3	2.5	2.0	1.6
	He 90%	2.24%	2.6	2.5	2.25	1.8
N = 170	He 50%	2.64%	3.5	2.7	2.1	1.7
	He 90%	3.35%	2.7	2.6	2.4	2

- The momentum corresponded to 2 sigma separation at 1.8m(N=150):
 - For 50%He,15GeV
 - For 90%He,18GeV
- 90%He gas with 170 layers configuration is possible to reach 2sigma separation.

dN/dx study

- ♦ Don't have enough confidence on how much can the actual dN/dx be achieved
- ♦ Have to estimate the effect from noise and electronic
 - ♦ Suppose a factor on detector efficiency: (assume 10% resolution)
 - ♦ 50%, gaus(0.5,0.05)
 - ◊ 30%, gaus(0.3,0.05)
 - ♦ The performance highly depends on efficiency both mean and sigma.



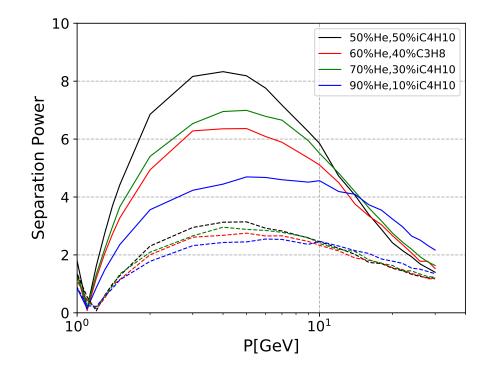
♦ 50% efficiency of this technique seems to be the lower band to satisfy the physics requirement.

dN/dx: Pi/K separation

Nlayer = 160 for 50% and 90%He, assuming 100%,50%,30% counting efficiency. But constraint on it's uncertainly maybe too strict.

Critical point :

Number of layers	Gas mixture	dE/dx resolution of 20GeV pion	Separation power of pi/k at different counting efficiency			
			$100 \pm 0\%$	50 ± 5%	30 ± 5%	
N = 140	He 50%	1.1%	>2	2.0	1.4	
	He 90%	2%	3.1	2.9	2.5	
N = 160	He 50%	1%	>2	2.2	1.5	
	He 90%	1.9%	3.3	3.1	2.6	


♦ With 50% counting efficiency, the minimum number of layers for reaching 2 sigma separation is 140.

Summary

- Focusing on PID performance in >10GeV range
- Configuration design:
 - ♦ For the gas choice: 50%He or 90%He
 - ♦ Gas pressure : 1atm
- Drift Chamber size consideration
 - ♦ With dE/dx measurement:
 - ♦ 90%He gas with 170 layers(2m), 50%He is hard to achieve the goal.
 - ♦ Hope that cluster counting could improve with:
 - ◊ 50% efficiency, N = 140(1.7m).

Backup

✤ K/pi separation for different gas with dN/dx and dE/dx.

