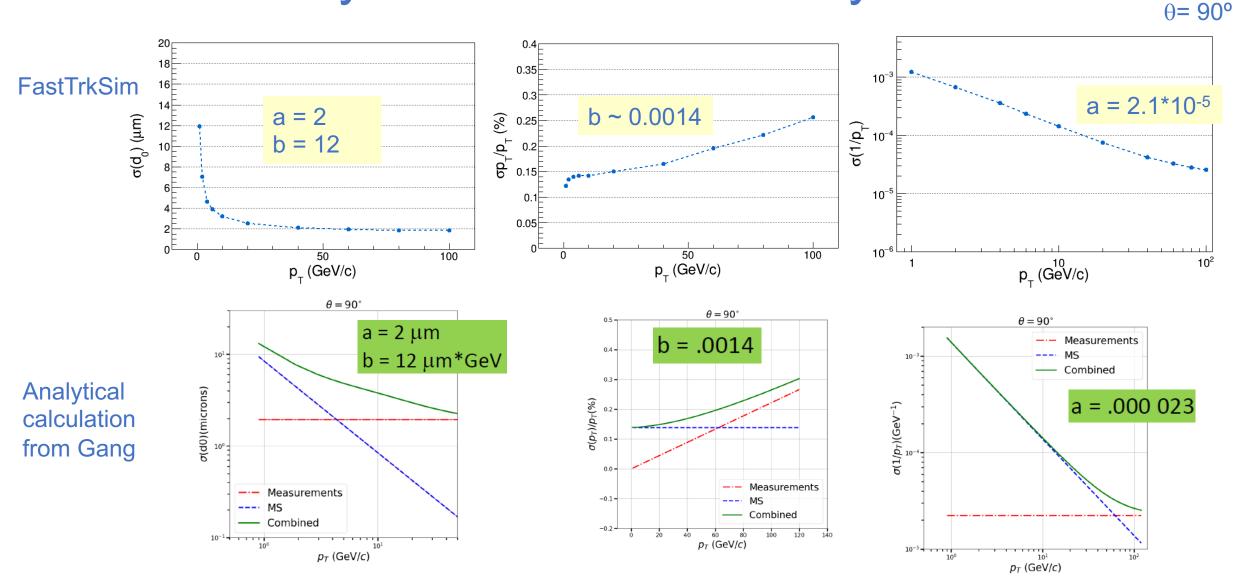
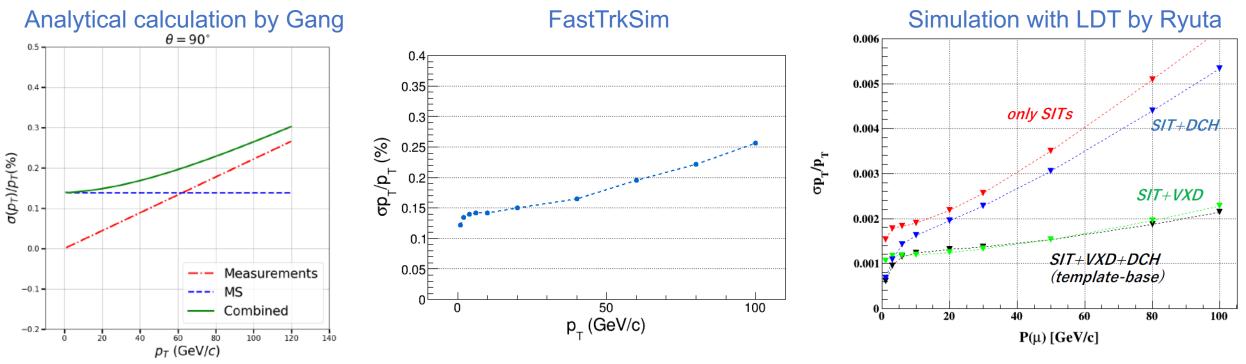

Update of FastTrkSim

Linghui Wu Mar 1, 2021


Introduction of FastTrkSim

- Aim to fast calculation or simulation for tracker layout optimization
- 1st version
 - Estimation of p_T resolution
 - Difference < 6% compared with tkLayout
 - Can not provide the resolution of impact parameters and angles including M.S. effect
- Updating to 2nd version
 - To achieve the resolution of all helix parameters with contribution of M.S.

FastTrkSim vs tkLayout


Preliminary results with full Si layout

• The results are consistent with Gang's calculation

Validation of resolution around 1GeV

- Difference between analytical calculation and LDT simulation observed
- Try to understand the difference around 1GeV/c

From Tracker discussion on Feb 1, 2021

Parabolic approximation in analytical calculation

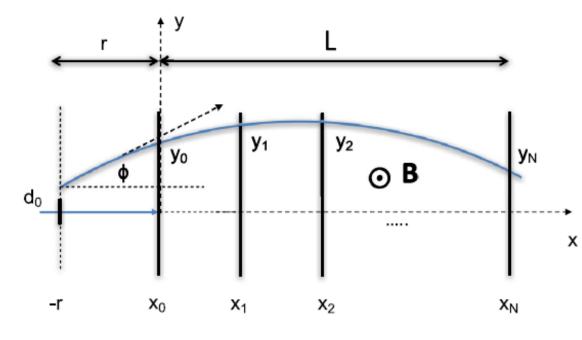


Fig. 4. A parabolic track through N + 1 equal and equidistant detector planes.

Nuclear Inst. and Methods in Physics Research, A 910 (2018) 127-132

Estimate resolution of track parameters from covariance matrix

$$\mathbf{C}_a = (\mathbf{G}^T \mathbf{C}_y^{-1} \mathbf{G})^{-1}$$

5. Parabolic track

We assume the geometry shown in Fig. 4 where a particle of momentum *p* describes a circle of radius R[m]=p[GeV/c]/(0.3B[T]) in the magnetic field. We approximate this circle by $f(x) = a_0 + a_1 x + a_2 x^2/2$ with $a_2 = 1/R$, such that the momentum resolution becomes

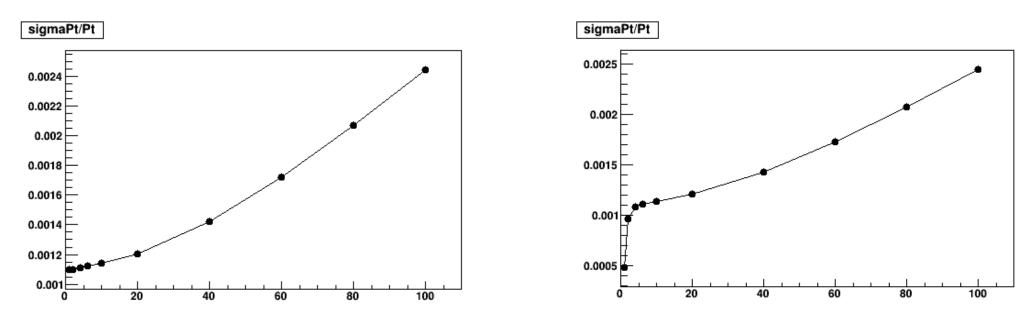
$$\frac{\Delta p}{p} = \frac{p}{0.3B} \,\Delta a_2 \tag{25}$$

As for the straight line track we assume a_1 to be small such that $\tan \phi \approx \phi \approx f'(x) = a_1 + a_2 x$ along the track. We have $g_0 = 1, g_1 = x, g_2 = x^2/2$ and therefore

$$\mathbf{G}^{T} = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1\\ 0 & \frac{L}{N} & \frac{2L}{N} & \frac{3L}{N} & \dots & L\\ 0 & \frac{1}{2} \left(\frac{L}{N}\right)^{2} & \frac{1}{2} \left(\frac{2L}{N}\right)^{2} & \frac{1}{2} \left(\frac{3L}{N}\right)^{2} & \dots & \frac{1}{2}L^{2} \end{pmatrix}$$
(26)

5

Comparison of G matrix


					Treese calculation with heix		
p _T =1GeV/c	1 1 1 1 1 1 1 1 1 1	0 2 21 23 42 44 62 173 282 1034 1794	0 0.0018 0.19845 0.23805 0.7938 0.8712 1.7298 13.468 35.7858 481.12 1448.3	-0.999922 -0.999902 -0.999584 -0.999538 -0.998978 -0.998906 -0.998151 -0.989117 -0.972821 -0.628013 0.563325	16 18 37 39 58 60 78 189 298 1050 1810	0.115203 0.145805 0.616135 0.684555 1.51432 1.62059 2.73949 16.1329 40.326 562.927 2541.09	
p _T =100GeV/c	1 1 1 1 1 1 1 1 1	0 2 21 23 42 44 62 173 282 1034 1794	0 0.0018 0.19845 0.23805 0.7938 0.8712 1.7298 13.468 35.7858 481.12 1448.3	-1 -1 -1 -1 -1 -1 -0.999999 -0.999997 -0.999967 -0.99999	16 18 37 39 58 60 78 189 298 1050 1810	0.1152 0.1458 0.61605 0.68445 1.5138 1.62 2.7378 16.0745 39.9618 496.131 1474.29	

Precise calculation with helix

Parabolic approximation

• The difference of G matrix is big at low transverse momentum (~1GeV/c)

Validation of G matrix in FastTrkSim

Precise calculation with helix

- The drop of momentum resolution curve at around 1GeV/c might be reasonable
- Could be validated with full simulation

Parabolic approximation

Summary and plan

- FastTrkSim is being updated to achieve the resolution of all helix parameters with contribution of M.S.
- Preliminary results are consistent with Gang's calculation
- The drop of momentum resolution curve at around 1GeV/c might be reasonable
- Plan
 - Check the resolution of all track parameters with different $\boldsymbol{\theta}$
 - Add the drift chamber to the layout