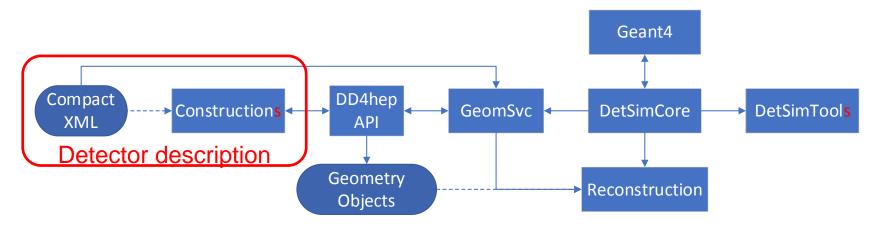
Implementation of CepC Detector in CEPCSW

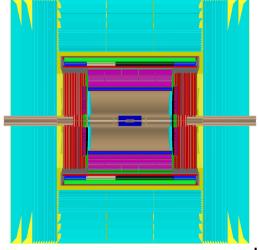

Chengdong FU (on behalf of CEPC software work group) CEPC Physics and Detector Plenary Meeting Beijing, 2021-03-10

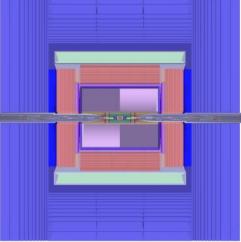
Contents

- Introduction
- Baseline detector in CDR
- Reference detector
 - Drift chamber + crystal bar
- Plan and Summary

Introduction

- DD4hep help use (CEPCSW) to make a complete detector description with a single source of information and cover the full life cycle of an experiment
- Detector description is a basic node for detector simulation

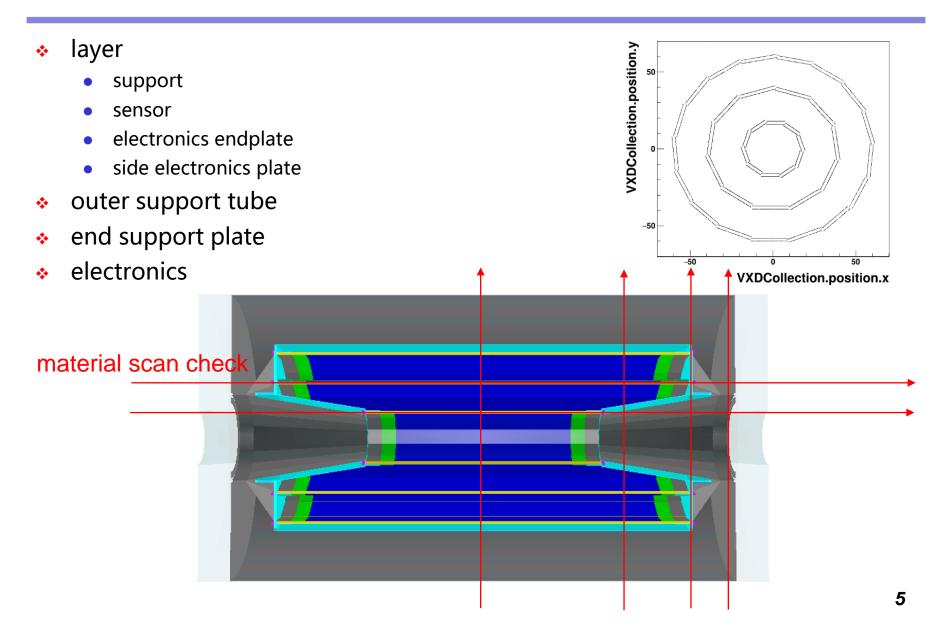



- Many physics analysis have been done based on the baseline detector in CDR, therefore to repeat the results in CEPCSW will help us to understand this new software framework well.
- Reference detector study is ongoing, with new detector modules such as drift chamber and crystal bar calorimeter, require to implement these detectors into CEPCSW to do full simulation.

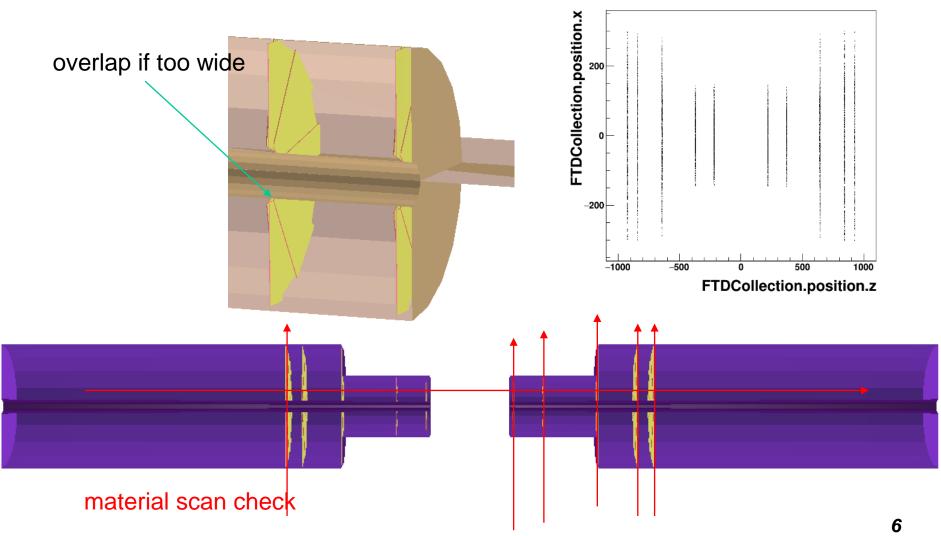
CDR Baseline Detector

Complete

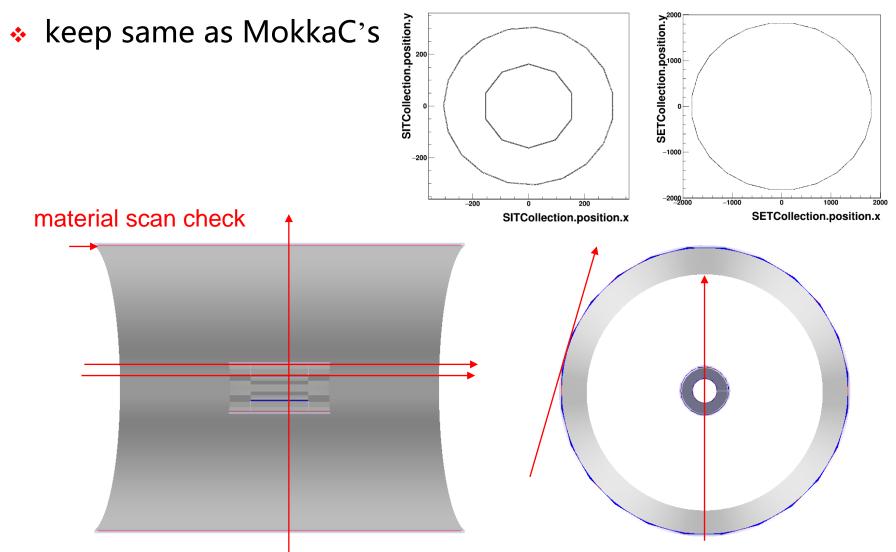
- Beam pipe: same at Z=0-700mm
- VXD
- FTD
- SIT&SET
- TPC
- Ecal
- Hcal
- Coil
- Yoke
- new MDI patch (code ready)
 - needs new DD4hep commit into Key4hep
- Validation
 - key parameters check
 - material scan (shape, repeat ...)
 - hit distributions
 - performance: ongoing



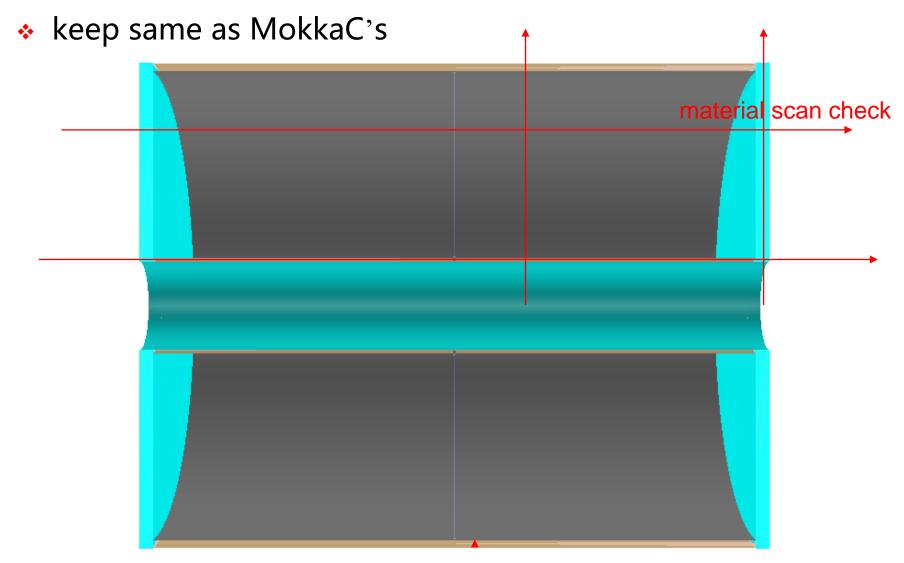
In MokkaC, both old MDI and new MDI are supported



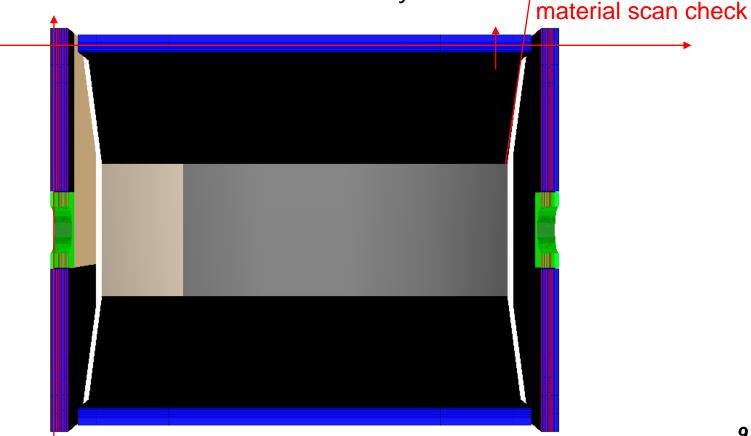
VXD



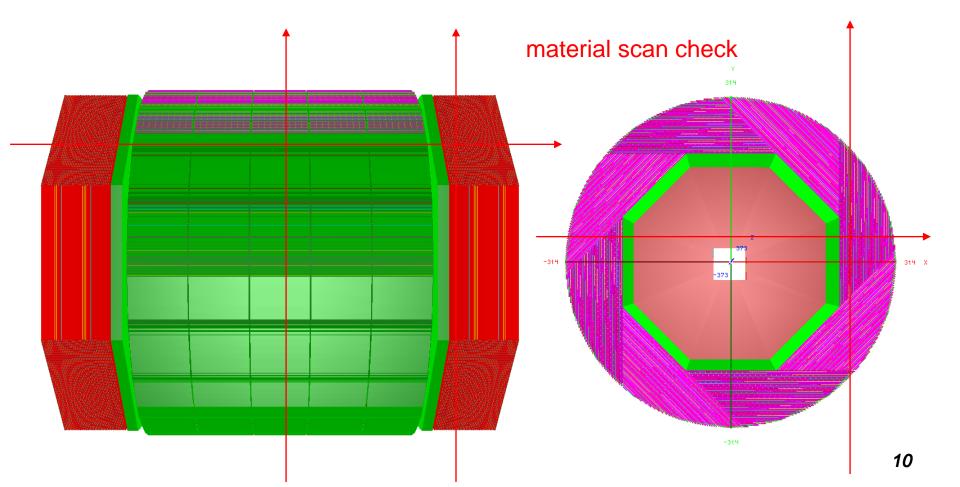
FTD



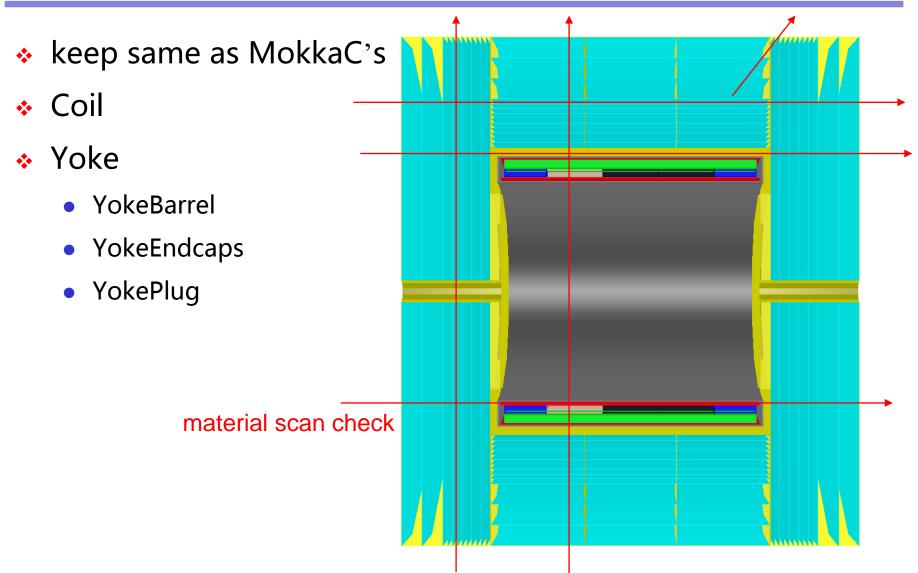
SIT & SET



TPC


Ecal

- EcalBarrel, EcalEndcaps, EcalECRing
- Tolerance gap (to avoid overlap in Mokka) removed
 - about 1e-9~2e-9 mm thick between layers and slices



Hcal

- RPC-based Hcal (Digital Hadron Calorimeter)
 - HcalBarrel, HcalEndcaps, HcalEndcapRing

Coil & Yoke

Detector Manager

- Version
 - CRD_01_v01 detector name main version minor version
- construction to build geometry and compact files [XML] carry parameters
 - current: simulation and reconstruction use same compact files
 - considering:
 - simulated data carry compact file
 - simulated data carry version and save compact file into DB
- compact files
 - Main : CRD_o1_v01.xml
 - include:

...

- elements.xml and materials.xml
- CRD_Dimensions_o1_v01.xml
- Hcal_Rpc_Barrel_v01_01.xml

name type [tag] construction parameter version

<includes> <gdmlFile ref="\${DD4hepINSTALL}/DDDetectors/compact/elements.xml"/> <gdmlFile ref="</pre> </includes> <define> <constant name="world size" value="25*m <constant name="world x" value="world size"/> <constant name="world y" value="world size <include ref="\${DD4hepINSTALL}/DDDetectors/compact/detector types.xml"/> </define> <include ref="./CRD Dimensions v01 01.xml"/> <include ref=" <include ref= <include ref= <include ref= v01 01.xml"/> <include ref= <include ref=' <include ref=

Dimensions

Global dimensions describe in CRD_Dimensions_o1_v01.xml

- sub-detector IDs
- crossing angle
- nominal value of magnetic field
- limit definitions
- region definitions
- display definitions
- inner radius and outer radius
- half length for barrel
- zmin and zmax for endcap
- other dimensions

```
<constant name="Yoke_barrel_inner_radius" value="3710*mm"/>
<constant name="Yoke_barrel_outer_radius" value="6951*mm"/>
<constant name="Yoke_barrel_half_length" value="Hcal_endcap_zmax"/>
<constant name="Yoke_barrel_symmetry" value="8"/>
```

easy to locate the edge of every subdetector, avoiding overlap between subdetectors while updating, quick to modify dimensions to replace with new type of sub-detector

- Module dimensions (optional) describe in sub-detector compact file
 - avoid fixed parameters in construction, easy to update

Magnet inside or outside

- Module dimensions
 - calculated by global dimension
 - set for those parameters not dependent on global dimension
 - slice thickness
 - material
 - module gap
 - etc.
- Easy to exchange the positions of two sub-detectors through global dimensions
 - Coil inside
 - Solenoid_inner_radius: Ecal_barrel_outer_radius + Ecal_Coil_gap
 - Hcal_barrel_inner_radius: Solenoid_outer_radius + Hcal_Coil_gap
 - Coil outside
 - Solenoid_inner_radius: Hcal_barrel_outer_radius + Coil_Hcal_gap
 - Hcal_barrel_inner_radius: Ecal_barrel_outer_radius + Ecal_Hcal_gap

Replace sub-detector

- ◆ one sub-detector ↔ one or more compact files, forbid to load two sub-detectors in one file
 - Hcal: HcalBarrel, HcalEndcaps, [HcalEndcapRing]
- Add sub-detector by include corresponding compact file
- Remove sub-detector by comment/remove include its compact file

<include ref="../CRD_common_v01/Hcal_Rpc_Barrel_v01_01.xml"/>

<include ref="../CRD_common_v01/Hcal_Rpc_Endcaps_v01_01.xml"/>

<!--include ref="../CRD_common_v01/Hcal_Rpc_EndcapRing_v01_01.xml"/-->

✤ To replace a sub-detector with another new sub-detector TPC → DriftChamber

<pre><include ref="sit simple planar sensors 01.xml"></include></pre>	
<include ref="tpc10 01.xml"></include>	
<include ref="set_sin</th><th><pre>planar_sensors_01.xml"></include>	
<include <b="" ref="/CRD</th><th>common_v01/SIT_SimplePlanar_v01_01.xml">/></include>	
<pre><include ref="/CRD</pre></th><th><pre>common_v01/DC_Simple_v01_01.xml"></include></pre>	
<pre><include ref="/CRD_</pre></th><th><pre>common_v01/SET_SimplePlanar_v01_01.xml"></include></pre>	

Detector Information (README.md)

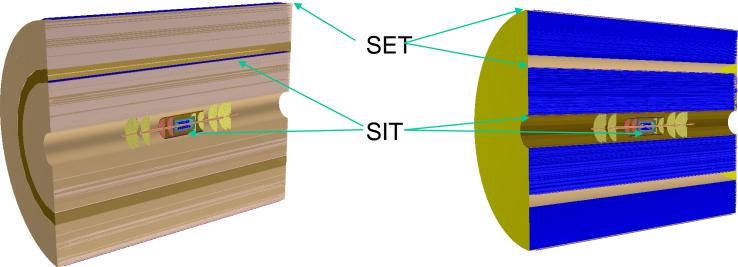
CRD detector models - Overview

The following CRD detector models are available in CEPCSW

Details

CRD_o1_v01 (to update)

- coil inside CRD model
- BeamPipe with center pipe + crotch link to doubly-pipe Detector/DetCRD/src/Other/CRDBeamPipe_v01_geo.cpp
- Vertex with silicon ladders (VXD + SIT12) Detector/DetCEPCv4/src/tracker/VXD04_geo.cpp -Detector/DetCEPCv4/src/tracker/SIT_Simple_Planar_geo.cpp
- MainTracker with Dirft Chamber + silicon layer between inner and outer chambers (DC + SIT34 + SET) DC_outer_radius = 1716*mm Detector/DetDriftChamber/Src/driftchamber/DriftChamber.cpp Detector/DetCEPCv4/src/tracker/SET_Simple_Planar_geo.cpp
- EndcapTracker with silicon pestals (FTDPixel + FTDStrip) Detector/DetCEPCv4/src/tracker/FTD_Simple_Staggered_geo.cpp
- Ecal with crystal Detector/DetCRD/src/Calorimeter/CRDEcal.cpp Endcap (TODO)
- · Hcal with RPC readout creates two sets of hit collections
- Coil CEPC_v4 like
- Yoke CEPC_v4 like
- compact files: ./CRD_o1_v01/CRD_o1_v01.xml


CRD_o1_v02 (to update)

- based on CRD_o1_v01
- SIT: strip -> pixel
- SIT12_SSIT1+r = 152.00 _S 1/10.00 mm (nivel SIT1)

information for sub-detectors

CRD_o1_v01 and CRD_o1_v02

- CRD_01_v01
 - coil inside Hcal
 - Drift Chamber (Mengyao Liu, Tao Lin and Yao Zhang)
 - Crystal bar Ecal (Fangyi Guo)
 - new MDI
 - others CEPC_v4 like (dimension re-defined)
 - VXD, FTD, SIT, SET, Hcal, Coil, Yoke
- CRD_o1_v02 (pixel SIT)
 - SIT/SET: $3 \rightarrow 4$

More Modules Implementation

- Beampipe
 - follow newest MDI design (Chengdong FU)
- vertex detector
 - Optimized layouts and mechanics (Hao ZENG & Kewei WU)
- silicon tracker
 - CMOS module
- Drift chamber
 - axial wires only \rightarrow both axial and stereo wires (Mengyao LIU & Yao ZHANG)
- Crystal bar Ecal
 - optimization and Endcaps (Fangyi GUO)
- Hcal
 - Aanalog Hadron Calorimeter (scintillator as): coming soon (Chengdong FU)
- Coil
 - CEPC_v4 like \rightarrow new design (Ling ZHAO's talk)
- Yoke
 - CEPC_v4 like \rightarrow more general layers
 - easy to modify design through parameters (Xiaolong WANG)

Plan

- Current preliminary CRD_o1_v01 and CRD_o1_v02 are been developing, will be frozen in future
 - replace some CEPC_v4 like sub-detectors with new modules
 - mechanics will be added according to study progress
- More versions will be released to support physical study and detector optimization
 - Magnet outside as comparison
 - DHCAL VS AHCAL
 - full silicon tracker
 - magnetic field variation
 - new sub-detectors on requirement (such as TOF, Cherenkov detector etc.)

Summary

- The baseline detector in CDR has been implemented into CEPCSW, and keep almost same as Mokka's, ready for next study.
- There are two versions of reference detectors in developing
 - parts of sub-detectors are CEPC_v4 like
 - available as preliminary, to update
- More implementations of modules and more release detector versions are in plan.

