dN/dx study on the CEPC drift chmaber

Shuiting Xin

March 8.2021

Introduction

CEPC Drift Chamber layout

- ♦ "physics requirement" for CEPC Drift Chamber:
 - ♦ 2sigma k/pi separation power at 20GeV
 - \diamond 2% resolution of dE/dx.

♦ Optimization the layout with Garfield++ simulation.♦ Electronic simulation progress.

dN/dx vs #layer

♦ A smooth method is used : Fitting mean, sigma of k,pi energy loss to obtain the separation curve. $\mu \sim constant$, $\sigma \sim 1/\sqrt{N}$

- ♦ 3 gas mixture -> no big difference between 50% and 70% in separation plot.
- \diamond 50%He and 90%He will be discussed in the following page.
- ♦ Above 10GeV, separation with 90%He is better than with 50%He.

dE/dx and dN/dx: Gas pressure

♦ dE/dx
$$\sigma = 2.5823 * atm^{-0.286}$$

- \diamond dN/dx $\sigma = 1.0524 * atm^{-0.48}$
- ♦ For both dE/dx and dN/dx, no significant improvement above 10GeV, 1 atm gas is enough.

dN/dx study

- ♦ Don't have enough confidence on how much can the actual dN/dx be achieved
- ♦ Have to estimate the effect from noise and electronic
 - ♦ Assume a factor on detector efficiency: $F(N_{final}) = Possion(N_{truth}) * Gaus(\mu, \sigma)$
 - ◊ μ = 30%, 50% or 80%, σ = 5% or 8%.
 - ♦ The performance highly depends on efficiency both mean and sigma
- ♦ Separation plots for different efficiency assumption at 20GeV.

◇ 2 sigma separation using 50%He with efficiency $80 \pm 5\%(80 \pm 8\%)$ refer to 110(140) layers.
◇ 90%He surpass 50% He at 20GeV.

dN/dx: Pi/K separation

Nlayer = 160 for 50% and 90%He, assuming 100%,80%,50%,30% counting efficiency. But constraint on it's uncertainly maybe too strict.

Critical point :

Number of layers	Gas mixture	σ(dN/d x)20Ge V pion	Separation power of pi/k at different counting efficiency						
			$100 \pm 0\%$	80 ± 8%	$80 \pm 5\%$	50 <u>±</u> 8%	$50 \pm 5\%$	30 ± 8%	30 ± 5%
120(1.5m)	He 50%	<2%	2.4	1.8	2.1	1.4	1.8	1.0	1.2
	He 90%	<2%	2.9	2.6	2.7	2.5	2.6	2.0	2.3
160(1.9m)	He 50%	<2%	2.7	2.2	2.3	1.6	2.1	1.2	1.3
	He 90%	<2%	3.3	3.1	3.2	3.0	3.1	2.3	2.4

- ♦ With 80% counting efficiency, the minimum number of layers for reaching 2 sigma separation is 120.
- ✤ He 90% could full-fill the requirements with less Nlayers.

Simulation with preamplifier

Thanks to electronics group with helpful discussion!

Guang Zhao

Summary

- Focusing on PID performance in the range of P>10GeV
- Configuration design:
 - ♦ For the gas choice: 50%He or 90%He
 - ♦ Gas pressure : 1atm
- Drift Chamber size consideration
 - ♦ With dE/dx measurement:
 - ♦ 90%He gas with 170 layers(2m), 50%He is hard to achieve the goal.
 - ♦ Hope that cluster counting could improve with:
 - ◊ 50% efficiency, N = 140(1.7m).
 - ♦ A Conservative design : 1.8m by 50% counting efficiency
 - ♦ A radical design: 1.5m by 80% counting efficiency
- Next step :
 - ♦ To implement Garfield++ simulation in CEPCSW.
 - ♦ Electronic and noise simulation

Backup

10% uncertainty of counting efficiency

Backup

✤ K/pi separation for different gas with dN/dx and dE/dx.

