

Status of the CEPC HCAL

Outline

- Background introduction
- Progress of AHCAL prototype
- Progress of SDHCAL
- Summary

Background

- The baseline Calorimeter detector option is guided by the particle flow algorithm (PFA)
- Physics requirement
 - Linearity:±3%
 - Resolution: $\frac{60\%}{\sqrt{E(GeV)}} \oplus 3\%$
- AHCAL: Scintillator + SiPM
 - \rightarrow Progress of AHCAL Prototype
- SDHCAL: RPC
 - \rightarrow Progress of SDHCAL timing electronics

Outline

- Background introduction
- Progress of AHCAL prototype
 - Scintillator production and wrapping
 - Batch test of detector cells
 - HBU development
- Progress of SDHCAL
- Summary

Structure of AHCAL Prototype

⊚ Task: BMR < 4% and $60\%/\sqrt{E} \oplus 3\%$

 validate the CEPC AHCAL option by designing, building and testing a full AHCAL prototype

Prototype

- Transverse dimension: 72cm × 72cm
- Number of layers: 40
- Single layer
 - Stainless steel as absorber: 20 mm
 - Scintillator as sensitive medium: 3 mm
 - SPIROC2E as baseline; KLAUS as another option
- Detector cells
 - Cell size: 40mm × 40mm
 - Sensor: SiPMs from HPK & NDL
 - Total number of channels: 12,960

Single layer and detector part

Detector cell of 40mm ×40mm ×3mm

Scintillator Production and Wrapping

I6000 scintillators have been produced using the injection molding technique

1	2	3	4	5	6	7	8	9	10	11	Total
1800	2880	1600	1180	1640	1640	1540	430	2160	890	410	16170

The light yield of each scintillator is about 40 p.e., tested by NDL-22-1313-15S

Automatic wrapping and labelling

- 100 scintillators cost 75min once
- The remaining tiles is expected to be finished by the next month

Batch Test of Detector Cells

- Test the uniformity of all scintillators
- 13360-1325PE SiPM @5V overvoltage
- Auto-moving MIP source : Sr-90
 - 144 channels each run
- ③ 3 batch testing platforms

Batch Testing Platform

Batch Test of Detector Cells

- Substitution \pm 15%
- The difference between channels will be calibrated
- The difference between 3 platforms will be calibrated

Batch Test of Detector Cells

- 7000 SiPMs will be received in two months.
- A SiPM test platform has been designed.
 - A SiPM detachable fixer
 - SKIROC2a readout or discrete-circuit readout
 - Test quality: break down voltage, dark count, gain

SiPM Test Platform

2021/3/25

Development of HBU

HBU:HCAL Basic Unit

 \odot The sensitive size of one layer: $72 \times 72 \text{ cm}^2$

- A single layer is equally divided into 3 boards
- Each board is 78.5×24 cm² and has 108 channels
- Every layer is controlled by one DIF board

All electronics parts have been tested and verified.

2021/3/25

Schedule of AHCAL Prototype

Outline

- Background introduction
- Progress of AHCAL prototype
- Progress of SDHCAL
 - Timing electronics development
 - GRPC construction

SDHCAL Prototype

Semi-Digital Hadronic CALorimeter technological prototype (SDHCAL)

- Igh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)
- Hits associated to three thresholds:
 - 1st threshold = 110fC
 - 2nd threshold = 5pC
 - 3rd threshold = 15pC
- - \rightarrow Dimensions: $1m \times 1m \times 1.3m$
- \otimes 6 Interaction length ($6\lambda_I$)
 - \rightarrow Semi-digital readout

Motivation using Timing Information

Timing could be an important factor to identify delayed neutron and better reconstruct their energy.

Motivation using Timing Information

Time information can be very helpful to separate close by showers and reduce the confusion for a better PFA application.

1 ns resolution

100ps resolution

Fast Timing Measurement

- Purpose: => Identify neutral and charged hadrons
- Position, Energy and Timing => 5D HCAL
- Adding MRPC layers in the SDHCAL
- Fast timing readout electronics for MRPC readout
 - PETIROC from Omega group (resolution: ~40 ps)

- First step:
 - Design a FE prototype with four PETIROC2B chips

Prototype of Timing Electronics

- The FEE prototype includes four PETIROC chips, 128 readout pads on the PCB bottom side for MRPC induction signals.
- Detector Interface(DIF) card was designed to connect FEE and FPGA board
 - Data transmission, power rail and clock source.
- The DAQ system should be developed to transfer data between FEE and PC.

Hardware of Timing Electronics Prototype

Status of System Test

The test platform has been setup.

• FEB, DIF, DAQ based on ZCU102

PETIROC Configuration works well

- All of bias voltage values are correct.
- Output data has been checked, after sending trigger signals

ILA Status: Idle		Т												24, 380		
Name	Value)	2,000	4,000	6,000	8,000	10,000	12,000	14,000	16,000	18,000	20,000	22,000	24,000	26,000	
petiroc2a_cfg_spi_inst/ila_cfg_rstn	1															
petiroc2a_cfg_spi_inst/ila_cfg_star	1															
<pre>betiroc2a_cfg_spi_inst/ila_spi_clk</pre>	0															
petiroc2a_cfg_spi_inst/ila_spi_beg	1															
petiroc2a_cfg_spi_inst/ila_spi_data	1															
₩ petiroc2a_cfg_spii_cfg_data[31:0	1000000						0	00000					Bias Volt	age		Valu
petiroc2a_cfg_spi_inst/ila_spi_stop	0											vref	_inpdac			0.9
♥ petiroc2a_cfg_spi/ila_spi_cnt[3:	2											vref	time			1.6
W petiroc2a_cfg_spidata_length[7:0	20											vref	charge			0.9
petiroc2a_cfg_spirray_length[7:0	01	14	13 12		0 0f	0e 0	d Oc	Ob Oa	09	08 07	06	05	_onarge		-	0.0
												vrei			_	0.1
												vref	_adc			0.9
												vref	_time_pa	ad		1.6

Status of System Test

- DAQ system is based on Xilinx ZCU102 that contains Processing System (PS) and Programmable Logic (PL).
- Embedded design (SDK) in ZCU102 (PS) is applied ۲
 - UART communication works well
 - Ethernet communication works well

FPGA Logic Design Block Diagram

× Echo

Progress of GRPC Construction

SJTU group built 50cm x 35cm, 100cm x 100cm RPCs

We are now building $1m \times 1m$ chambers.

CEPC Day

AHCAL:

- The production and batch test of scintillators will be finished before summer.
- The SiPM test platform will be completed soon.
- HBU electronics can work now, the mechanics design has been started.
- Production of all 40 prototype layers will be finished this year.
- The prototype construction will start before the end of this year, and the cosmic and beam test are expected next year.

SDHCAL:

- The timing electronics including FEE and DIF, have been designed and manufactured.
- Test platform have been constructed.
 - PETIROC chips can be successfully configured.
 - Ethernet and UART communication have been completed.
- The DAQ system is still under development.

Thanks for your attention!

Backup Slides

CEPC Day

24

Scintillator Production and Wrapping

- Massive production of scintillator tiles using the injection molding technique since November 2020 in GNKD
 - confirmation of craft: temperature, pressure, ratio of solute and solvent
 - Tiles of around 16,000 have been produced
- The light yield of one scintillator is about 40 p.e. test by NDL-22-1313-15S

The SiPM comparison

NDL-SiPM:

- High PDE, dark rate and crosstalk
- Low breakdown
- Low price

HPK-SiPM

- Low PDE, dark rate and crosstalk
- High breakdown

Low price

Company	HPP	NDL			
Туре	13360-1325PE	14160-1315PS	22-1313-15S		
Light output [p.e.]	13	17	40		
Crosstalk[%]	1.59	1.17	4.4		
Dark Counts [kHz]	120	290	550		
Breakdown[V]	53	38	27.5		

Batch test of scintillators

- MIP source : Sr 90
- The scintillator light is detected by the SiPM 13360-1325PE working at the 5V overvoltage
- The SiPM signal is read by the SPIROC2E chip

Introduction of PETIROC chip

Time measurement with 10bits TDC interpolating 40MHz coarse time

- Scharge measurement (Q>50fC) with 10bits DAC
- Voltage input amplifier, 2000hm matching
- In the second second
- PETIROC parameters:
 - One chip with 32-channels and mixed analog/digital
 - The 32chs input connected with PAD (detector unit)

- One channel split into two parts, respectively for charge and time measurement
- Internal DAC for each channel to adjust the amplitude of the input signal
- Lower power consumption (~6mW/channel)
- Jitter ~18 ps RMS on trigger output (4 photoelectrons injected)

Development of HBU

- Challenge for HBU mechanics
 - The weight of 72 cm imes 72 cm imes 2cm steel board is 81.5KG
 - The connection between PCB boards
 - The warping of the PCB
- The concept design for AHCAL single layer structure
 - Use part of the absorber to make a box for PCB

Sub-component Design and Testing

Front-End readout Board Design with pads and four petiroc2b

Sub-component Design and Testing

- Detector Interface Card Design: mainly jitter cleaner and power system
- DIF card will be in charge of the communication and data transfer with the FE electronics(two headers) and ZCU102(two FMCs). **More Details**
- Analog and digital power are separated.

2th Version

Embedded design based on FPGA -- UART

#include <st</pre>

#include <st #include #include

#include "x #include #define TX

static struc unsigned clip //Static Glo int tcp tra

char data

- The embedded design in ZCU102(PS side) mainly contains serial port communication(UART), ethernet communication(TCP/IP) and PETIROC configuration(Slow Control).
- WART test in PS side:
 - Hardware only needs **Processing System part** on ZCU102.
 - Write the C/C++ code and run on the hardware platform.
 - Information is printed on the tool window through UART port.

lude <stdio.h></stdio.h>	>> 友善串□调试助手	- 🗆 X
lude <string.h></string.h>		たけへい またのとり い
lude "lwip/err.h"	又件(上) 碥褌(上) 税陞(⊻) ⊥具(⊥) 控	制(C) 常助(H)
lude "lwip/tcp.h"	📄 🐽 🕨 🚺 🔳 🕞 -	⊢ — ITT \$63
Lude "xil cache.h"		
lude "xil_printf.h"	┌串口设置 ————————————————————————————————————	[00.00.03 120] Xiliny Zung MP Einst Stage Boot Loader
Lude "sleep.h"		Release 2019 2 Feb 23 2021 - 16:51:14
ine TX_SIZE 102	端 🗆 COM4 💽	PMU-FW is not running, certain applications may not be supported.
is struct top ach*connected ach - NULL:	波特率 115200 •	[09:00:05.247] TCP client connecting to 192.168.1.100 on port 5001
<pre>red client connected = 0:</pre>		On Host: Run \$iperf -s -i 5 -w 2M
atic Global Function, blind for external file	数据位 8 🔹	Start PHY autonegotiation
tcp_trans_done = 0;		[09:00:05.253] Waiting for PHY to complete autonegotiation.
har data[TX_STZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}:	12¢3∞1⊻ None •	[09:00:09.261] autonegotiation complete
ar data[TX_SIZE] = "Hello World! Successfully Send Word From PS Client";	停止位 1 🔹	link speed for phy address 12: 1000
send data()	222 422 11	
	流 拴 None 💽	UARI Output
err_t err;		
connected_pcb;	┌接收设置 ————————————————————————————————————	
f (!tpcb)	6	
return -1;	• ASCII • Hex	
//判断发送数据长度是否小于发送缓冲区剩余可用长度	☑ 自动换行	
<pre>f (TX_SIZE < tcp_sndbuf(tpcb)) {</pre>		
<pre>//Write data for sending (but does not send it immediately).</pre>	□ 显示发送	
if (err != ERR OK) {	☑ 显示时间	
<pre>xil_printf("txperf: Error on tcp_write: %d\r\n", err);</pre>	1 302 21 V (c) [c]	UAKI Debug Assistant
connected_pcb = NULL;	4525211 四	er att Debug / isoletant
} }	汉达议旦	
•	• ASCII • Hex	发送
<pre>//Find out what we can send and send it onp = top output(top));</pre>	□ 白动乘份 4000 1	
if (err != <i>ERR OK</i>) {	□ 目列里及 1000 丁 ms	
<pre>xil_printf("txperf: Error on tcp_output: %d\r\n",err);</pre>		sad
return -1;		
} ```	COM4 OPENED, 115200, 8, NONE, 1	OFF RX: 449 Bytes IX: 0 Bytes

UART communication test

