

Progress on CEPC MDI Background Study

Haoyu SHI On Behalf of CEPC MDI Working Group CEPC DAY, 2021.3.25

	Higgs	W	Z (3T)	Z (2T)			
Number of IPs		2					
Beam energy (GeV)	120 80 45.5						
Circumference (km)	60 ¹ 01155	100	-1947-2				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.0	36			
Crossing angle at IP (mrad)		16.5×2					
Piwinski angle	2.58	7.0	23	.8			
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.	0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns	+10%gap)			
Beam current (mA)	17.4	87.9	461	.0			
Synchrotron radiation power /beam (MW)	30	30	16	.5			
Bending radius (km)		10.7					
Momentum compact (10-5)	1,11						
β function at IP β_x^* / β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001			
Emittance $\varepsilon_x/\varepsilon_y$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016			
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04			
Beam-beam parameters ξ_x/ξ_y	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072			
RF voltage V_{RF} (GV)	2.17 0.47			0			
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)						
Natural bunch length σ_{z} (mm)	2.72	2.98	2.4	2			
Bunch length σ_z (mm)	3.26	5.9	8.5				
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94				
Natural energy spread (%)	0.1	0.066	0.038				
Energy acceptance requirement (%)	1.35	0.4	0.2	3			
Energy acceptance by RF (%)	ergy acceptance by RF (%) 2.06 1.47 1.7						
Photon number due to beamstrahlung	0.1	0.05 0.023					
Lifetime _simulation (min)	100			0.000			
Lifetime (hour)	0.67	1.4	4.0				
F (hour glass)	0.89	0.94	0.9	9			
Luminosity/IP L (1034cm-2s-1)	2.93	10.1	16.6	32.1			

CEPC DAY, H. SHI, 2021.3.25

- Photon BG and Beam Loss BG were simulated using different tools. Injection BG is ignored for now.
 - Cross-check and benchmark needed.
- Other BGs are planned to study.

Background	Generation Tracking		Detector Simu.	
Synchrotron Radiation	BDSim	BDSim/Geant4		
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH	C A D	Mokka	
Beam-Gas Bremsstrahlung	PyBGB	SAD		
Radiative Bhabha	Bbbrem/PyRBB			

- Photon BG and Beam Loss BG were simulated using different tools. Injection BG is ignored for now.
 - Cross-check and benchmark needed.
- Other BGs are planned to study.

Background	Generation	Tracking	Detector Simu.	
Synchrotron Radiation	BDSim	BDSim/Geant4	Mokka	
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH			
Beam-Gas Bremsstrahlung	PyBGB	SAD		
Radiative Bhabha	Bbbrem/PyRBB			

Starting with Synchrotron Radiation

- Original central beam pipe design need to be improved.
- Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region due to high hitting number/power/detector impact

Starting with Synchrotron Radiation

- Original central beam pipe design need to be improved.
- Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region

Revised beam pipe design to achieve No direct SR photons hitting the central beam pipe except the extreme beam conditions (e.g. beam off orbit due to magnet errors)

Starting with Synchrotron Radiation

- Original central beam pipe design need to be improved.
- Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region

Revised beam pipe design to achieve No direct SR photons hitting the central beam pipe except the extreme beam conditions (e.g. beam off orbit due to magnet errors)

S. Bai

	X(m) S. Bai		Power Deposition	Average Power Density
		0.805~0.855m	16W	88.9W/cm ²
	S(m)	0.855~2.2m	12.3W	2.54W/cm ²
-6 -4 -2 -0 (2 4 6 3(iii)	QD0(2.2m~4.2m)	2.79W	0.39W/cm ²
-0.1		QD0~QF1(4.2~4.43m)	36.1W	43.6W/cm ²
		QF1(4.43m~5.91m)	3W	0.56W/cm ²
2021/3/25	CE	PC DAY, H. SHI, 2021.3.25		8

Error Cases
 Scattered Photons

- ~40000 photons would hit Be beampipe per bunch crossing
 - Consistent with CDR results

- ~ 40000 photons would hit Be beampipe per bunch crossing
 - Consistent with CDR results
- Most photons hitting Be pipe were generated at ~-70m.
 - Photons should hit the slope at ~-1.11m to -0.855m, and then scattered to Be pipe.

- ~ 40000 photons would hit Be beampipe per bunch crossing
 - Consistent with CDR results
- Most photons hitting Be pipe were generated at ~-70m.
 - Photons should hit the slope at ~-1.11m to -0.855m, and then scattered to Be pipe.
- Masks are needed.
 - We have tried different positions, but it seems hard to decrease the Be hitting numbers.(~32500/BX)

- ~ 40000 photons would hit Be beampipe per bunch crossing
 - Consistent with CDR results
- Most photons hitting Be pipe were generated at ~-70m.
 - Photons should hit the slope at ~-1.11m to -0.855m, and then scattered to Be pipe.
- Masks are needed.
 - We have tried different positions, but it seems hard to decrease the Be hitting numbers.(~32500/BX)
 - We need to know the source of the photon.

- New mask design:
 - Tungsten
 - 4mm height
 - 10mm long
 - Locates at -1.21m

- New mask design:
 - Tungsten
 - 4mm height
 - 10mm long
 - Locates at -1.21m

Z (m)

- New mask design:
 - Tungsten
 - 4mm height
 - 10mm long
 - Locates at -1.21m
- Lots of photons are secondaries, generated within QD0
- ~300 photons/BX could hit Be beampipe, with a.e. ~100keV
 - $\sim 1.44 \times 10^{-8}$ W on Be beampipe

- New mask design:
 - Tungsten
 - 4mm height
 - 10mm long
 - Locates at -1.21m
- Lots of photons are secondaries, generated within QD0
- ~300 photons/BX could hit Be beampipe, with a.e. ~100keV
 - $\sim 1.44 \times 10^{-8}$ W on Be beampipe

1.47 w

5.13w

8.69*10-4

0.36 w

22.61w

Nearly 20 versions tried in last 10 months

Revised beampipe design

Pair Production

• Detector Impact on 1st layer of vertex detector, with a safety factor of 10

Mode	Hit Density($cm^{-2} \cdot BX^{-1}$)	$TID(krad \cdot yr^{-1})$	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$
Higgs	1.81	499.476	9.68×10^{11}
W	1.228	8434.486	1.55×10^{13}
Z(2T)	0.359	5551.370	1.06×10^{13}

Radiative Bhabha scattering

 Lots of loss particles are "outside" of the beampipe.

SAD Aperture Radiative Bhabha scattering [m] × 0.8 • Lots of loss 0.6 particles are "outside" of the -0.6 beampipe. -0.8-2 • Due to the tracking z [m] Zoom in mechanism of SAD 3 2 0.2 -0.1 -0.2

Radiative Bhabha scattering

- Lots of loss particles are "outside" of the beampipe.
 - Due to the tracking mechanism of SAD
- The improvement of the tracking method is needed.

۲(m)

Tracking Method Improvement

Method 2 – Cut

Tracking Method Improvement

CEPC DAY, H. SHI, 2021.3.25

1

Tracking Method Improvement

Method 1 – Out

Method 2 – Cut

Method 3 – Before

Method 4 – Move

	Method 1 - Out	Method 2 - Cut	Method 3 – Before	Method 4 – Move
Hit Density($cm^{-2} \cdot BX^{-1}$)	0.155	0.004	0.03	0.0066
TID(krad · yr ^{−1})	244.603	2.072	20.3	6.04
$\begin{array}{c} 1 \text{ MeV equivalent neutron} \\ fluence \\ (n_{eq} \cdot cm^{-2} \cdot yr^{-1}) \end{array}$	6.62×10 ¹¹	4.03×10 ⁹	3.97×10 ¹⁰	1.12×10 ¹⁰

Beam Gas Bremsstrahlung

- Updated tracking method applied
 - Method 3(Before)
 - Generate/tracking in whole ring
- Due to tracking method updating, the results decreased from CDR.

Lost distribution

- Downstream lost is higher with collimators.
- The lost within downstream magnet is significant.
 - Mitigation and shielding are needed.

Beam Lost Particle Distribution -- With Collimator

CEPC DAY, H. SHI, 2021.3.25

Detector Impact

• Preliminary results on 1st layer of vertex. Safety factor applied.

Background	Hit Density(a	$m^{-2} \cdot BX^{-1}$)	TID(kra	$d \cdot yr^{-1}$)	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$		
	Higgs	Z	Higgs	Z	Higgs	Z	
Pair production	1.81	0.359	499.476	5551.370	9.68×10 ¹¹	1.06×10^{13}	
Synchrotron Radiation	0.026		15.65				
Radiative Bhabha	0.02		20.3		3.97×10^{10}		
Beam Gas	0.359	2.89×10 ⁻³	363.614	181.97	9.84×10 ¹¹	4.99×10 ¹¹	
Beam Thermal Photon	0.02		22.31		6.20×10^{10}		
Total	2.235		921.35		2.537×10^{12}		

Experiments – Benchmark

- Important to validate the modellings and Monte Carlo Simulation codes for the CEPC beam background simulation with real data where they are applicable
 - BEPC II/BES III, SuperKEKB/Belle II, LEP I/II…
- Basic Principles Key Parameters & Distinguish
 - Single beam mode: three dominant contributions from Touschek, beam-gas and electronics noise & cosmic rays.

•
$$O_{single} = O_{tous} + O_{gas} + O_{noise+\mu} =$$

 $S_t \cdot D(\sigma_{x'}) \cdot \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$

- Double beam mode: additional contributions from luminosity related backgrounds, mainly radiative Bhabha scattering
- $O_{total} = O_{e^+} + O_{e^-} + O_{\mathcal{L}}$
- We hope to perform another run of BG experiment on early April

Summary & Outlook

- We try to finish the work based on CDR
 - The finalization of the central beam pipe design has been determined.
 - Mask has been designed, BG simulation and thermal analysis are performed based on new design.
 - Tracking Method has been updated.
- We plan to benchmark our study with experiments.
 - Using BEPCII/BESIII, hope to be done on early April
- We consider to move to high luminosity design in coming months.

Summary & Outlook

- We try to finish the work based on CDR
 - The finalization of the central beam pipe design has been determined.
 - Mask has been designed, BG simulation and thermal analysis are performed based on new design.
 - Tracking Method has been updated.
- We hope to benchmark our study with experiments.
 - Using BEPCII/BESIII, expect to be done on early April
- We plan to move to high luminosity design in coming months.
 Thank You

Backup

HOM analysis for asymmetry

- Maximum HOM Heat load at High-Lumi Z
 - 415.6(Be) + 1386.3(Al) + 855.85 (Cu) W

Y. Liu

距 IP 距离(m m)	形状	内径(mm)	材料	内表面积 (mm ²)	备注	总功率8 目1ggs (W)	功率密度& Higgs (W/cm ²)	功率分布& Higgs (W)	总功率& Z (W)	功率密度& 2 (W/cm ²)	功率分布& Z (W)	总功率 組 Z (W)	功率密度& 里 2 (W/cm ³)	功率分布& Ⅱ Z (₩)
0 - 120	國直管	直径28	Be	10556		6.6	0.06	6.60	47.92	0.45	47.92	415.6	3.94	415.60
120-205	國直管	直径28	AI	7477				2.71			39.44			169.36
205-655	國锥管	直径28过 渡到直径 40	AI	48071	taper:1.7 5	22.2	0. 04	17. 44	322.8	0.53	253. 54	1386.3	2. 27	1088. 85
655-700	國直管	直径40	AI	5655				2.05			29.83			128.09
700-780	圆直管	直径40	Cu	10052	远程连接 装置预留			2.60			39.05			168.64
780-805	圆面过 渡到跑 道型	水平方向 直径40- 40, 垂直 方向直径 40-30.7	Cu	3124		13.2	0. 03	0. 81	198.2	0.39	12. 14	855.85	1.68	52. 41
805-855	跑道型 过渡到 两个圆 面	上游直径 12 下游直径 20	Cu	6932				1. 79			26.93			116. 30
855-1110	上游圆 锥管 下游圆 直管	上游直径 12过渡到 20,下游 直径20	Cu	30906				8.00			120. 08			518.50

Mitigation – Collimator

S. Bai

- 2 sets of horizontal collimators have been put in ring.
 - Upstream beam loss have been reduced to low level. •
 - We are sure to need more.
- Preliminary design of the movable collimator has been ٠ done.
 - Impedance and the SR impact on collimator has been calculated. ٠

Name	Location	From IP
APTX1	D1I.1897	2139.06
APTX2	D1I.1894	2207.63
APTX3	D10.10	1832.52
APTX4	D10.14	1901.09

2021/3/25

Combine Results – Original CDR

Higgs Backgrounds on 1st layer of Vertex. With a safety factor of 10

Background Type	Hit Density(<i>cm</i> ⁻² · <i>BX</i> ⁻¹)	TID(krad ∙ yr ^{−1})	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$
Pair production	1.91	526.11	1.05×10^{12}
Synchrotron Radiation	0.026	15.65	
Radiative Bhabha	0.34	592.66	1.44×10^{12}
Beam Gas	0.9607	1235.9	3.37×10^{12}
Beam Thermal Photon	0.02	22.31	6.20×10^{10}
Total	3.2567	2392.63	5.922×10^{12}