

Overview on QCD studies at BESIII

Xiaorong Zhou University of Science and Technology of China <u>zxrong@ustc.edu.cn</u>

第三届重味物理和量子色动力学研讨会,天津 2021.5.1-5.3

Limits of the Standard Model

The standard model of particle physics is a well-tested theoretical framework,

However, the SM has a number of issues need further investigation:

□ The nature of quark confinement

□ Matter-antimatter asymmetry of the Universe

Gravity, dark matter, neutrino masses, numbers of flavors, etc.

19 free parameters of the SM

Masses			Couplings					
Parameter	Value	Method	Parameter	Value	Method			
m _u	1.9 MeV	Lattice	α	0.0073	non-collider +			
m _d	4.4 MeV	Lattice	G	1.17x10 ⁻⁵	Non-collider			
m _s	87 MeV	Lattice	a.	0.12	Lattice + collider			
m _c	1.3 MeV	Collider	Elayour and CP violation					
m_b	4.24 MeV	Collider	Playour and CF violation					
m_t	173 GeV	Collider	Parameter	Value	Method			
m _e	511 keV	Non-collider	A (CVM)	13 10	Collider			
m_{μ}	106 MeV	Non-collider	012 (CKIVI)	15.1°	Collider			
μ 	1.78 CoV	Collider	θ_{23} (CKM)	2.4°	Collider			
m _e	1.78 Gev	conider	θ_{13} (CKM)	0.2°	Collider			
mz	91.2 GeV	Collider	δ(CKM-CPV)	0.995	Collider			
m_H	125 GeV	Collider	θ (strong CP)	~0	Non-collider			

Does not include neutrino masses and mixing angles

QCD coupling strength

QCD-related Topics to be Presented

Precision Test of the SM $(g-2)_{\mu}, \alpha_{EM}$ ISR $e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0$ R-value measurement **Tau mass measurement**

Hadron Structures **Fragmentation Function Baryon Form Factor:** Nucleon (p, n), Hyperon (Λ , Σ , Ξ , Λ_c)

Hadron Spectroscopy

1⁻⁻ resonance in 2-3 GeV $e^+e^- \rightarrow K^+K^-, \phi KK, KK\pi\pi$ $e^+e^- \rightarrow \phi \eta, \phi \eta', \omega \eta$

Data Samples Collected at BESIII

Precision Test of the SM

 $(g-2)_{\mu}, \alpha_{EM}$: ISR $e^+e^- \rightarrow \pi^+\pi^-, \pi^+\pi^-\pi^0$ R-value measurement **Tau mass measurement**

Muon g-2: SM contributions

 $92(18) \times 10^{-11}$

 4.2σ discrepancy => Strong indication for physics beyond the SM? HVP contribution to $(g-2)_{\mu}$

$$a_{\mu}^{had} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, \sigma_{had}^{(0)}(s) \, K(s)$$

K(s) decreases monotonically with increasing *s* $\sigma_{had} = \sigma(e^+e^- \rightarrow hadrons)$

> additional channels < 1.8 GeV

 a_{μ}^{HVP}

KK

all channels

> 1.8 GeV

BESIII contributions to a_{μ}^{HVP}

BESIII contributions to a_{μ}^{HLbL}

- $\gamma \gamma^* \rightarrow \pi^0$ (shown right), ongoing studies: $\eta('), \pi^+ \pi^-, \pi^0 \pi^0, \pi^0 \eta, f_1(1285) \dots$
- Less relevant, but unique Q² range at BESIII;
- More important, to confirm calculations(LQCD, dispersion) which are used in a_{μ}^{HLbL} predictions.

τ mass measurement at BESIII

- The τ-lepton mass is a fundamental parameter of the Standard Model
- Lepton universality test:

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{B(\tau \to e\nu\bar{\nu})}{B(\mu \to e\nu\bar{\nu})}$$

Universality is sensitive to: m_{τ}^5

For e, μ , $\Delta m/m \sim 10^{-8}$, , for τ , $\Delta m/m \sim 10^{-4}$, need more precise measurements.

- Methods
 - Pseudomass technique: ARGUS, OPAL, BELLE and BABAR
 - Threshold scan method : DELCO, BES (92, 96), KEDR and BESIII

τ mass measurement at BESII

 $m_{\tau} = 1776.91 \pm 0.12^{+0.10}_{-0.13} MeV / c^2$ PRD 90, 012001 Calculate g_{τ} with $B(\tau \rightarrow evvbar)$ and τ_{τ} from PDG $g_{\tau} = (1.1650 \pm 0.0034) \times 10^{-5} GeV^{-2}$ Compatible with previous determination Dominant uncertainty still comes from Δm_r The ratio of squared coupling constants: $(g_{\tau} / g_{\mu})^2 = 1.0016 \pm 0.0042$ agrees at the 0.4 σ level !

Yoshio Koide equality testing

$$m_{e} + m_{\mu} + m_{\tau} = \frac{2}{3} (\sqrt{m_{e}} + \sqrt{m_{\mu}} + \sqrt{m_{\tau}})^{2}$$
$$\Delta f_{m} = \sqrt{\sum_{i=e,\mu,\tau} (m_{i} - \frac{2}{3} \sum_{k=e,\mu,\tau} \sqrt{m_{i}m_{k}})^{2} \times (\frac{\delta m_{i}}{m_{i}})^{2}}$$

The error:
$$\Delta f_m \approx \frac{1}{3} \delta m_\tau \approx 60 \, keV$$

1776.30^{+2.80} ARGUS **BES (96')** 1776.96^{+0.31} 1778.20^{+1.50} CLEO OPAL 1775.10^{+1.90} 1776.61^{+0.38} BELLE 1776.81^{+0.30}_{-0.28} **KEDR** BABAR 1776.68^{+0.43} 1776.82^{+0.16} PDG12 1776.91^{+0.16} This work 1766 1768 1776 1778 1780 1774 1770 1772 τ mass (MeV/c²)

Nucleon structure

Fragmentation Function Baryon EM form factors: Nucleon (p, n), Hyperon (Λ , Σ , Ξ , Λ_c)

Fragmentation Function

- Nucleons are composite objects with inner structure. At low Q, perturbative QCD not possible (expansion of coupling constant α_s)
 - ⇒ Nucleon structure must be measured in experiments!

Fragmentation functions can be studied at BESIII:

- Unpolarized fragmentation function
- Collins fragmentation function (chiral odd)
- Di-hadron fragmentation function

Collins Fragmentation Functions

$$\frac{d^{6}\sigma^{e^{+}e^{-} \to h_{a}h_{b}X}}{d\Omega \, dz_{a} \, dz_{b} \, d^{2}\vec{P}_{a\perp}} = \frac{3 \, \alpha_{\rm em}^{2}}{Q^{2}} \, z_{a}^{2} z_{b}^{2} \left(A(y) \, \mathcal{C}_{e^{+}e^{-}} \left[D_{1}\bar{D}_{1}\right] + B(y) \, \cos(2\phi_{0}) \, \mathcal{C}_{e^{+}e^{-}} \left[\frac{2\hat{h} \cdot \vec{k}_{aT} \, \hat{h} \cdot \vec{k}_{bT} - \vec{k}_{aT} \cdot \vec{k}_{bT}}{M_{a} \, M_{b}} \, H_{1}^{\perp} \, \bar{H}_{1}^{\perp}\right]\right)$$

where we use the convolution integral

$$\begin{split} \mathcal{C}_{e^+e^-}[wD\bar{D}] &= \sum_q e_q^2 \int d^2 \vec{k}_{aT} \, d^2 \vec{k}_{bT} \, \delta^{(2)}(\vec{k}_{aT} + \vec{k}_{bT} + \vec{P}_{aT}/z_a) \\ &\times w(\vec{k}_{aT}, \vec{k}_{bT}) \, D^{h_a/q}(z_a, z_a^2 \vec{k}_{aT}^2) \, D^{h_b/\bar{q}}(z_b, z_b^2 \vec{k}_{bT}^2) + \{q \leftrightarrow \bar{q}\} \,. \end{split}$$

To avoid detection-related effects, experimentally, a double ratio measurement was proposed:

U: pi+&pi- or pi-&pi+ L: pi+&pi+ or pi-&pi-

$$\frac{R^U}{R^{L(C)}} = A\cos(2\phi_0) + B,$$

Electromagnetic Form Factors

- Fundamental properties of the nucleon
 - > Connected to charge, magnetization distribution
 - > Crucial testing ground for models of the nucleon internal structure

The nucleon electromagnetic vertex Γ_{μ} describing the hadron current:

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + rac{i\sigma_{\mu\nu}q^{
u}}{2m_p}F_2(q^2)$$

Sachs FFs: $G_E(q^2) = F_1(q^2) + \tau \kappa_p F_2(q^2), \ G_M(q^2) = F_1(q^2) + \kappa_p F_2(q^2)$ 15

Proton Form Factors

• Both scan and ISR technique applied

PRL 124, 042001 (2020) PRD 91, 112004 (2015) SA-ISR: PRD 99, 092002 (2019) LA-ISR: arXiv:2102.10337, submit to PLB

- From threshold to q²=4.0 GeV², average cross section 840 pb (close to point-like cross section at threshold)
- $|G_E/G_M|$, $|G_M|$ are determined with **high accuracy**, comparable to data in SL.

Neutron Form Factors

arXiv:2103.12486

Oscillation Structure in Form Factor

• Periodic behavior of $|G_p|$ for the proton observed at Babar and confirmed at BESIII. Can we see a similar effect in the neutron channel?

- Oscillation of |G| observed in **neutron data**
- Simultaneous fit of proton and neutron data, shared frequency C=(5.55 ± 0.28) GeV⁻¹
- Almost orthogonal behavior with large phase difference $\Delta D = |D_p D_n| = (125 \pm 12)^\circ$

Threshold effect on $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$ and $e^+e^- \rightarrow \Lambda \overline{\Lambda}$

- A hint for resonance around $\Lambda\Lambda$ **threshold** in $e^+e^- \rightarrow KKKK$ cross section: Mass=2232±3.5 MeV, width≈20 MeV PRD 97, 032013 (2018) 0.4 BaBar BESIII DM2 0.3 α (up) α 0.1 $0.9_{.2}^{-}$ 2.4 2.3 2.5 \sqrt{s} (GeV) PRD 100, 032009 (2019) 250 BES-III Data $\sigma^{Born}(e^+e^- \rightarrow \phi \ K^+K^-) \ (pb)$ $\sqrt{\Lambda}$ thresho 200 X(2232) contribution continuum contribution 150 100 50 C 2.2 2.4 2.6 2.8 3 √s (GeV)
- The BESIII measurements indicate that there is indeed a step in $\Lambda_c^+ \overline{\Lambda}_c^-$, similar to $p\overline{p}$, followed by a plateau.

Determination of the Relative phase of Λ FFs

- **Complex form** of FFs:
 - $G_E = |G_E| e^{i\Phi_E}, G_M = |G_M| e^{i\Phi_M}$
 - Relative phase: $\Delta \Phi = \Phi_E \Phi_M$
- A non-zero phase has **polarization** effect on the Baryons:
 - $P_y \propto \sin \Delta \Phi$
- The **angular** distribution of daughter baryon from Hyperon weak decay is:
 - $\frac{d\sigma}{d\Omega} \propto \mathbf{1} + \alpha_A P_y \cdot \widehat{q}$
 - α_{Λ} : asymmetry parameter
 - \hat{q} : unit vector along the daughter baryon in hyperon rest frame

 $\left|\frac{G_E}{G_M}\right| = 0.96 \pm 0.14(\text{stat.}) \pm 0.02(\text{sys.})$ $\Delta \Phi = 37^\circ \pm 12^\circ(\text{stat.}) \pm 6^\circ(\text{sys.})$

Confirm the complex form of EMFFs !

0.96±0.14±0.021
ABLIKIM19BF BES3 $e^+e^- \rightarrow \overline{\Lambda}\Lambda$ at $\sqrt{s} = 2.396 \text{ GeV}$ 1
Determined using the latest BES-III value on the asymmetry parameter $\alpha = 0.750 \pm 0.010$.

 $\Delta \Phi = \Phi_E - \Phi_M \text{ in } \Lambda \rightarrow \rho \pi^-, \overline{\Lambda} \rightarrow \overline{\rho} \pi^+$ $\underline{ALUE (degrees)} \qquad 1 \text{ ABLIKIM} \qquad 19BF \text{ BES3} \qquad e^+ e^- \rightarrow \overline{\Lambda} \Lambda \text{ at } \sqrt{s} = 2.396 \text{ GeV}$ $\frac{1}{2} \text{ Relative phase between CE and GM} \qquad determined using the latest BES III value on the set of the se$

 1 Relative phase between GE and GM, determined using the latest BES-III value on the asymmetry parameter α = 0.750 \pm 0.010.

Baryon pair production at Continuum

- As no meson-cloud contribution, abundant theoretical prediction on the form factors in SL, *e.g.* Lattice QCD. But corresponding experiments for hyperons are limited due to their unstable nature.
- A lot results of TL form factors appears for hyperons. Possible to combine the TL and SL via dispersion relation in a unified frame?

Hadron spectroscopy

1⁻⁻ **resonance in 2-3 GeV** $e^+e^- \rightarrow K^+K^-, \phi KK, KK\pi\pi$ $e^+e^- \rightarrow \phi \eta, \phi \eta', \omega \eta$

The nature of $\phi(2170)$

- Experimental information of $\phi(2170)$
 - Limited decay modes
 - Inconsistence on Mass & Width
- Theoretical explain of $\phi(2170)$
 - *ssg* hybrid
 - $2^3 D_1$ or $3^3 S_1 s \bar{s}$
 - Tetraquark
 - Molecular state $\Lambda\overline{\Lambda}$
 - $\phi f_0(980)$ resonance with FSI
 - Three body system ϕKK

The nature of $\phi(2170)$ is still not fully understood ²³

$e^+e^- \rightarrow K^+K^-$

PRD 99, 032001 (2019) 1^{--} resonance observed in $K^+K^$ lineshape:

- Differs from the world average parameters of $\phi(2170)$ by more than 3σ in mass and more than 2σ in width

- Interpreted as isoscalar : ω^* , $\phi(2170)$ Or isovector : $\rho(2150)$

$e^+e^- \rightarrow \phi \eta'$ and $\phi \eta$

- **1**⁻⁻ resonance observed in $\phi\eta$ and $\phi\eta'$
 - Isoscalar ω^* is suppressed due to OZI rule
 - Conflict with $s\bar{s}g$ hybrid prediction on $\mathcal{B}_{\phi\eta}/\mathcal{B}_{\phi\eta'}$

$e^+e^- \to K^+K^-\pi^0\pi^0$

Table 22: Fitting parameters.										
channel	$e^+e^- \to K_1^+(1400)K^-$		$e^+e^- \rightarrow K^+(1460)K^-$	$e^+e^- \to K_1^+(1270)K^-$		$e^+e^- \to K^{*+}K^{*-}$				
Mass (MeV/c^2)	2126.5 ± 16.8									
Width (MeV)	106.9 ± 32.1									
	Solution1	Solution2		Solution1	Solution2					
$\mathcal{B}_R \Gamma^{e^+ e^-}$ (eV)	7.6 ± 3.7	152.6 ± 14.2	1.0 ± 1.3	4.7 ± 3.3	98.8 ± 7.8	0.04 ± 0.2				
ϕ (rad)	3.7 ± 0.4	4.5 ± 0.3	5.6 ± 1.5	4.0 ± 0.2	4.5 ± 0.1	5.8 ± 1.9				
Significance(σ)	4.8		4.5	1.4		1.2				

PWA for $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ at multiple energy points Cross section lineshapes for intermediate states => essential input to clarify the nature of $\phi(2170)$

$e^+e^- \rightarrow \omega\eta$ and $\omega\pi^0$

- Resonance in $\omega\eta$ lineshape: ω^* or $\phi(2170)$
- Resonance in $\omega \pi^0$ lineshape: $\rho(2000)$ or $\rho(2150)$

Unique place at BESIII to study 1^{--} resonance between $\sqrt{s} = 2.0$ to 3.0 GeV. However, there are still questions and puzzles! 27

- **BESIII** is a good platform for the non-perturbative QCD with the unique energy region.
- BESIII has a lot progress in the QCD researches at low q² to precisely test the SM, study hadron structure and spectroscopy, etc.
- There is still results which cannot be well explained, e.g. abnormal threshold effect, nature of phi(2170)...Work more closely with theory is necessary.