

$$\begin{split} \Xi_c &\to \Xi \mbox{ Form Factors and} \\ \Xi_c &\to \Xi l^+ \nu_l \mbox{ Decay Rates From} \\ \mbox{ Lattice QCD} \end{split}$$

上海交通

QI-AN ZHANG*

TSUNG-DAO LEE INSTITUTE, SHANGHAI JIAO TONG UNIVERSITY

* Based on arXiv:hep-lat/2103.07064; May 2, 2021
 * In collaboration with J.Hua, F.Huang, R.Li, Y.Li, @第三届重味物理与量子色动
 C.D.Lv, P.Sun, W.Sun, W.Wang and Y.B.Yang. 力学研讨会, 天津

- Motivation
- Semi-leptonic Ξ_c decays and helicity-based form factors
- Lattice calculations of $\Xi_c \to \Xi$ form factors
- Differential decay width and branching fractions from

lattice results

- Determination of $|V_{cs}|$
- Summary

- Determine CKM matrix elements $|V_{cs}|$;
- Provide a stringent test and first-principle verification for theoretical models;
- E_c
- Important for the experimental researches of heavy baryons:
 - Studies of doubly-charmed baryon Ξ_{cc}^{++} decay

R. Aaij et al. [LHCb], PRL121, 162002 (2018)

- Precision measurement of the lifetime of Ξ_b^0 R. Aaij et al. [LHCb], PRL113, 032001 (2014)
- Discovery of new exotic hadron candidates Ω_c R. Aaij et al. [LHCb], PRL118, 182001 (2017)

Motivation

- Ξ_c contains more versatile decay modes
 - $\Xi_c \rightarrow \Xi$ contain different QCD dynamics with $\Lambda_c \rightarrow \Lambda$;

- A different pattern between inclusive and exclusive decays of Λ_c and D:

$$\frac{\mathscr{B}(\Lambda_c^+ \to Xe^+\nu_e) = (3.95 \pm 0.34 \pm 0.09)\%}{\mathscr{B}(\Lambda_c^+ \to \Lambda e^+\nu_e) = (3.63 \pm 0.38 \pm 0.20)\%} \xrightarrow{\mathscr{B}(D^0 \to Xe^+\nu_e) = (6.49 \pm 0.11)\%} \xrightarrow{\mathscr{B}(D^0 \to K^-e^+\nu_e) = (3.542 \pm 0.035)\%} \xrightarrow{\sim 2}$$

M. Ablikim et al. [BESIII], PRL121, 251801 (2018)

• Experimental measurements of the branching fractions of semileptonic decays $\Xi_c^0 \rightarrow \Xi^- l^+ \nu_l$

Y. B. Li et al. [Belle], arXiv:2103.06496 [hep-ex].

To optimize the signal selection criteria and calculate the signal reconstruction efficiency, we use Monte Carlo (MC) simulated events. The $e^+e^- \rightarrow c\bar{c}$ process is simulated with PYTHIA [55], while the signal events of Ξ_c^0 semileptonic decays are generated using the form factor from Lattice QCD calculation [56], and $\Xi_c^0 \rightarrow \Xi^- \pi^+$ decays are generated with EVTGEN [57]. The MC events are processed with a detector simulation based

Important input for the signal events generation in experimental simulation!

Experimental

Belle $\mathscr{B}\left(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}\right) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\%$ $\mathscr{B}\left(\Xi_{c}^{0} \to \Xi^{-}\mu^{+}\nu_{\mu}\right) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50)\%$

Y. B. Li et al. [Belle], arXiv:2103.06496 [hep-ex].

ALICE $\mathscr{B}\left(\Xi_c^0 \to \Xi^- e^+ \nu_e\right) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%$

J. Zhu on behalf of the ALICE collaboration, PoS ICHEP2020 (2021) 524.

Theoretical

 QCD SR
 $\mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (3.4 \pm 1.7) \%$ Z. X. Zhao, arXiv:2103.09436 [hep-ph].

 LF QM
 $\mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (3.49 \pm 0.95) \%$ C. Q. Geng et al, arXiv:2012.04147 [hep-ph].

 LCSR
 $\mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (2.4^{+0.9}_{-1.0}) \%$ Y. L. Liu et al, J. Phys. G 37, 115010 (2010).

 Lattice
 2

Semileptonic Ξ_c decays:

Semileptonic Ξ_c decays:

axial-vector

- Hadronic matrix element: Helicity-base form factor parametrization

$$\left\langle \Xi \left(P_{\Xi} \right) \left| V^{\mu} \right| \Xi_{c} \left(P_{\Xi_{c}} \right) \right\rangle = \bar{u} \left(P_{\Xi}, S_{2} \right) \left[\left(m_{\Xi_{c}} - m_{\Xi} \right) \frac{q^{\mu}}{q^{2}} f_{0} \left(q^{2} \right) + \frac{m_{\Xi_{c}} + m_{\Xi}}{s_{+}} \left(P_{\Xi_{c}}^{\mu} + P_{\Xi}^{\mu} - \frac{q^{\mu}}{q^{2}} \left(m_{\Xi_{c}}^{2} - m_{\Xi}^{2} \right) \right) f_{+} \left(q^{2} \right) \right]$$

$$+ \left(\gamma^{\mu} - \frac{2m_{\Xi}}{s_{+}} P_{1}^{\mu} - \frac{2m_{\Xi_{c}}}{s_{+}} P_{\Xi}^{\mu} \right) f_{\perp} \left(q^{2} \right) u \left(P_{\Xi_{c}} \right),$$

$$\left\langle \Xi \left(P_{\Xi} \right) \left| A^{\mu} \right| \Xi_{c} \left(P_{\Xi_{c}} \right) \right\rangle = - \bar{u} \left(P_{\Xi}, S_{2} \right) \gamma^{5} \left[\left(m_{\Xi_{c}} + m_{\Xi} \right) \frac{q^{\mu}}{q^{2}} g_{0} \left(q^{2} \right) + \frac{m_{\Xi_{c}} - m_{\Xi}}{s} \left(P_{\Xi_{c}}^{\mu} + P_{\Xi}^{\mu} - \frac{q^{\mu}}{q^{2}} \left(m_{\Xi_{c}}^{2} - m_{\Xi}^{2} \right) \right) g_{+} \left(q^{2} \right)$$

 $+\left(\gamma^{\mu}+\frac{2m_{\Xi}}{s_{-}}P^{\mu}_{\Xi_{c}}-\frac{2m_{\Xi_{c}}}{s_{-}}P^{\mu}_{\Xi}\right)g_{\perp}\left(q^{2}\right) u\left(P_{\Xi_{c}}\right)$

8

Helicity based form factors

- Helicity based form factors: $f_{\perp}, f_0, f_+, g_{\perp}, g_0, g_+$
 - Non-perturbative
 - QCD sum rules, light-cone sum rules, light-front quark model, ...
 => model dependent
- Lattice QCD: a non-perturbative theory from the first principle of QCD
 - Discretization, and wick rotation to Euclidean spacetime;
 - Quark fields on lattice sites, gauge links connecting the sites;
 - Pion mass to benchmark the light quark mass;
 - Able to calculate the non-perturbative observables:

$$\langle O \rangle = \frac{1}{Z} \int D\psi D\bar{\psi} DAe^{-S_E}O$$

Credit: M. Savage@NNPSS2015

Lattice setup

- This work is based on 2+1 flavor ensembles generated with tree level tadpole improved clover fermion action and tadpole improved Symanzik gauge action;
- Basic informations of two ensembles used in this calculation;

	$\beta = \frac{10}{g^2}$	$L^3 \times T$	a	$c_{ m sw}$	κ_l	m_{π}	κ_s	m_{η_s}
s108	6.20	$24^3 \times 72$	0.108	1.161	-0.2770	290	0.1330	640
s080	6.41	$32^3 \times 96$	0.080	1.141	-0.2295	300	0.1318	650

• Determining the charm quark mass by requiring the J/ψ mass to its physical value $m_{J/\psi} = 3.96900(6)$ GeV within 0.3% accuracy: $m_c^{s108}a = 0.485$, $m_c^{s080}a = 0.235$.

Extract bare $\Xi_c \to \Xi$ form factors

Correlation functions on lattice

- Ratios for different

projections and currents:

 $R_{V\!/\!A}(T,\mu) =$

$$\frac{C_3^{V/A}\left(q^2, t, t_{\text{seq}}\right)C_3^{V/A}\left(q^2, t_{\text{seq}} - t, t_{\text{seq}}\right)}{C_2^{B_1}\left(t_{\text{seq}}\right)C_2^{B_2}\left(t_{\text{seq}}\right)}$$

- Ratios for the six form factors can be constructed by different combinations of $R_{V\!/\!A}(T,\mu)$.

Extract bare $\Xi_c \rightarrow \Xi$ form factors

Ratios for the six form factors can be constructed by different combinations

Renormalization factors for $c \rightarrow s$ **current**

Use the ratio of conserve current and vector current to determine the

$$renormalization factor Z_{V} \text{ for vector current:} \qquad \bar{q}_{1}V_{\mu}^{\text{cons.}}q_{2} = \bar{q}_{1}(x)\frac{1-\gamma_{\mu}}{2}U_{\mu}(x)q_{2}(x+\mu)$$

$$-\bar{q}_{1}(x+\mu)\frac{1+\gamma_{\mu}}{2}U_{\mu}^{\dagger}(x)q_{2}(x)$$

$$R_{V}^{q_{1}\rightarrow q_{2}}(t) = \frac{\left\langle M_{1}(T/2)\sum_{\vec{x}}V_{\text{cons.}}^{q_{1}\rightarrow q_{2}}(\vec{x},t)M_{2}(0)\right\rangle}{\left\langle M_{1}(T/2)\sum_{\vec{x}}V_{q_{1}\rightarrow q_{2}}(\vec{x},t)M_{2}(0)\right\rangle} = Z_{V}^{q_{1}\rightarrow q_{2}} + \mathcal{O}\left(e^{-T/4\Delta E}\right)$$

S. Hashimoto et al., PRD61, 014502 (1999); A. X. El-Khadra et.al., PRD64, 014502 (2001)

 $1 - \gamma_{\mu}$

- A "mostly nonperturbative" method:

$$Z_V^{c \to s} = \sqrt{Z_V^{c \to c} Z_V^{s \to s}}$$

- Differences arise from discretization effects, and will contribute to the systematic errors.

Use the off-shell quark matrix elements:

$$\frac{Z_q}{Z_A} \operatorname{Tr}[\langle q | A^{\mu} | q \rangle \gamma_{\mu} \gamma_5] = \frac{Z_q}{Z_V} \operatorname{Tr}[\langle q | V^{\mu} | q \rangle \gamma_{\mu}]$$

And the "most nonperturbative" method:

RI/MOM scheme

$$Z_A^{c \to s} \equiv Z_V^{c \to s} \sqrt{\frac{\operatorname{Tr}[\langle c | V^{\mu} | c \rangle \gamma_{\mu}]}{\operatorname{Tr}[\langle c | A^{\mu} | c \rangle \gamma_{\mu} \gamma_5]}} \frac{\operatorname{Tr}[\langle s | V^{\mu} | s \rangle \gamma_{\mu} \gamma_5]}{\operatorname{Tr}[\langle s | A^{\mu} | s \rangle \gamma_{\mu} \gamma_5]}}$$

G. Martinelli et al., Nucl. Phys. B445, 81 (1995).

• With a^2p^2 extrapolation using three values of p^2 in the range of $a^2p^2 = (4,6,8)$, we obtained $Z_A/Z_V = 1.010231(69)$ and 1.020296(68) on s108 and s080, respectively.

q^2 distribution for $\Xi_c ightarrow \Xi$ form factors

- Extrapolate to the continuum limit (shaded regions);
- *z*-expansion parametrization of form factors to obtain the q^2 -distribution:

$$f(q^2) = \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2}$$
$$\sum_{n=0}^{n_{\text{max}}} \left(c_n^f + d_n^f a^2 \right) \left[z(q^2) \right]^n$$

- Use D_s meson pole mass for $m_{\text{pole}}^{f_\perp}$, ...
- Consider the discretization effects by estimating the d_n^f terms.

Differential decay widths

Branching fractions and differential decay widths

- Predicted decay branching fractions:

$$\begin{aligned} \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) &= 2.38(0.30)(0.32)(0.07) \% \\ \mathscr{B} \left(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu \right) &= 2.29(0.29)(0.30)(0.06) \% \\ \mathscr{B} \left(\Xi_c^+ \to \Xi^0 e^+ \nu_e \right) &= 7.18(0.90)(0.96)(0.20) \% \\ \mathscr{B} \left(\Xi_c^+ \to \Xi^0 \mu^+ \nu_\mu \right) &= 6.91(0.87)(0.91)(0.19) \% \end{aligned}$$

- Statistical errors
- Systematic errors from continuum extrapolation
- Systematic errors from renormalization

 $(2.38 \pm 0.44)\%$

- Compare with PDG, experiment and theory:

PDG $\mathscr{B}(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}) = (1.8 \pm 1.2)\%$ Belle $\mathscr{B}(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\%$ ALICE $\mathscr{B}(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%$ QCD SR $\mathscr{B}(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}) = (3.4 \pm 1.7)\%$ LF QM $\mathscr{B}(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}) = (3.49 \pm 0.95)\%$ LCSR $\mathscr{B}(\Xi_{c}^{0} \to \Xi^{-}e^{+}\nu_{e}) = (2.4^{+0.9}_{-1.0})\%$

Our results fit the experimental measurements and theoretical predictions well (within 1-σ) !

Determination of $|V_{cs}|$

- From Belle measurements:

Y. B. Li et al. [Belle], arXiv:2103.06496 [hep-ex].

$$\mathcal{B} \left(\Xi_{c}^{0} \to \Xi^{-} e^{+} \nu_{e} \right) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50) \%$$

From the uncertainty of $\Xi_{c}^{0} \to \Xi^{-} \pi^{+}$
 $\mathcal{B} \left(\Xi_{c}^{0} \to \Xi^{-} \mu^{+} \nu_{\mu} \right) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50) \%$
 $|V_{cs}| = 0.834 \pm (0.051)_{\text{stat.}} \pm (0.56)_{\text{syst.}} \pm (0.127)_{\text{exp.}}$
Theo. error ~ 8.9%
Exp. error ~ 15.2%

- From ALICE measurements: J. Zhu on behalf of the ALICE collaboration, PoS ICHEP2020 (2021) 524.

$$\mathscr{B}\left(\Xi_{c}^{0}\to\Xi^{-}e^{+}\nu_{e}\right)=(2.43\pm0.25\pm0.35\pm0.72)\%$$

 $|V_{cs}| = 0.983 \pm (0.060)_{\text{stat.}} \pm (0.065)_{\text{syst.}} \pm (0.167)_{\text{exp.}}$

Exp. error ~ 17.0%

- Compare with PDG result:

 $|V_{cs}| = 0.97320 \pm 0.00011$

Theoretical uncertainties:

- total ~ 8.9%
- statistical ~ 6.1%
- systematic from extrapolation ~ 6.5%
- systematic from renormalization ~ 1.5%

Experimental uncertainties:

- Belle ~ 15.2%
- ALICE ~ 17.0%

- The first lattice QCD calculation of $\Xi_c \rightarrow \Xi$ form factors: predicted the differential decay widths, branching fractions, and extracted the CKM matrix element $|V_{cs}|$;
- The lattice calculation was done on two lattice spacings and extrapolated to the continuum, and finite renormalization was done by conserved vector current;
- A more precise experimental measurement will greatly improve the precision in $|V_{cs}|$ and can be achieved in future especially by Belle-II, LHCb and other experiments.

Thank you for your attentions!