

Recent CP violation results at the LHCb experiment

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences (中国科学院大学)

2021/05/01

南开大学 第三届重味物理和量子色动力学研讨会

Outline

• Introduction

• Recent highlights on CKM angle γ measurements

• Recent highlights on charmless b decays

• A new tool for amplitude analysis

• Conclusion

New Physics search

- All SM particles, including Higgs, have been found;
- However new mechanism needed for DM, matter-antimatter asymmetry, hierarchy problems etc.;
- Two ways to search for New Physics: direct search and indirect search through precision measurements;
- Examples in history: many beyond "current" model New Physics first found through indirect search

New Physics search at flavor sector

• Sensitive to New Physics scale much higher than direct search: 1-10⁴ TeV

- Also "tasteful", not only can tell there is New Physics, but also tell properties of New Physics based on flavor it couples to
- Statistics or precision is key for flavor program: New Physics scale, i.e. Dim = 6, proportional to $\sqrt[4]{statistics}$ or $1/\sqrt{Uncertainty}$,

Fundamental questions

• If there are new CPV mechanism needed to explain the large matter-antimatter asymmetry observed in Universe; and what are they?

• If there are New Physics coupling to flavor sector? Their energy scale and properties?

CKM Physics

• SM CPV offered by CKM mechanism; however, orders of magnitude smaller than matter-antimatter asymmetry observed in Universe

- CKM mechanism can explain what has been observed in current experiments, though still ~20% space for New Physics; More precision needed
- Strategy:

۲

- SM candle: tree level measurements such as γ,
 |V_{ub}|, |V_{cb}| etc.
 - New Physics search: finding deviations in loop level processes w.r.t SM predictions

Key parameter: angle γ

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

- Angle γ is the phase response for CPV in SM, directly related to the triangle of b quarks
- Measured through $b \to u$ and $b \to c$ interference with $B \to D^{(*)} K^{(*)}$ etc., theoretically clean

- Indirect measurements give: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$ [CKMFitter19]
- Before LHCb, precision from B-factories around 14°

Probe γ in different methods

Two-body D decays

• GLW/ADS measurements now performed with full Run1+Run2 data, for $B \rightarrow$

DK, $D\pi$ and partially reconstructed $B \rightarrow D^*K$, $D^*\pi$

Three-body D decays

• BPGGSZ (GLW/ADS over Dalitz plot) measurements now performed with full

Run1+Run2 data, for $B \rightarrow DK$, $D \rightarrow Ks\pi\pi$, KsKK

Combination between the two

- Good agreement between the two modes (expected)
- Much better sensitivity when combined \rightarrow key feature for γ measurements
- Important to add more channels and compare between them

New story from B_s decays

• $b \rightarrow u$ and $b \rightarrow c$ interference can also came with B_s mixing

- Now precision mainly from B⁺ decays, large potential from other b hadrons
- New average on γ from LHCb: $\gamma = (67 \pm 4)^\circ$, compared to 14° in B-factories
- Also now much closer to indirect determination: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$

Mixing parameters

• Mass eigenstates different from flavor eigenstates

• Textbook measurements, most precise to date; call for better precision on lattice parameters

Textbook story continues

LHCb-PAPER-2020-029

A first discovery of time-dependent CP violation in B_s^0 decays

Looking for new physics in penguins

- Not only from global fit, but also from new physics sensitive channels
- New sources of CP violation easy to enter in penguins: smoking gun for NP search
- Competitive contributions from tree and penguin diagrams: large CPV

or $-|V_{ts}|e^{-i\beta_s}$

+ New Physics

2021/05/01

 $|V_{td}|e^{ieta}$

$K\pi$ puzzle

- CPV from interference between suppressed tree-level process and QCD/EW penguin is sensitive for New Physics, $K\pi$ puzzle as an example [LHCb-PAPER-2020-040]
- Simple version of $K\pi$ puzzle: Isospin violated as $A_{CP}(B^+ \to K^+\pi^0) A_{CP}(B^0 \to K^+\pi^-) = 0.122 \pm 0.022$ (HFLAV); More complicated version involves full analysis of $K\pi$ system and tension also found inside.

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+})\frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0})\frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0})\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}$$

• Very difficult measurements in hadron colliders

$$\begin{aligned} &A_{CP} (B^+ \to K^+ \pi^0) \\ &= 0.025 \pm 0.015 (\text{stat.}) \\ &\pm 0.006 (\text{syst.}) \pm 0.003 (\text{ext.}) \end{aligned}$$

Strengthen the $K\pi$ puzzling and motivate further investigation in $B^0 \rightarrow K^0\pi^0$

CPV in three-body charmless B decays PRL 112 (2014) 011081 PRL 111 (2013) 101801 PRD 90 (2014) 112004

- Interesting CPV pattern seen on Dalitz plot of $B^+ \rightarrow h^+ h^- h'^+$, $h^{(\prime)} = K, \pi$
- Dalitz plot analysis needed to shed more light on understanding nature of these CPV

• Now, amplitude analyses of $B^+ \to \pi^+ \pi^- \pi^+$ and $B^+ \to K^+ K^- \pi^+$, with much larger statistics than previous B-factory analyses, has been performed

Dalitz plot analyses with CP violation

• Amplitude with CPV is modelled as

$$A(\Phi_3) = \sum_i A_i(\Phi_3) = \sum_i c_i F_i(\Phi_3)$$
 Strong dynamics
$$\bar{A}(\bar{\Phi}_3) = \sum_i \bar{c}_i F_i(\Phi_3)$$
 Strong + weak

• CPV then described as

$$c_i = (x_i + \Delta x_i) + i(y_i + \Delta y_i)$$

$$\bar{c}_i = (x_i - \Delta x_i) + i(y_i - \Delta y_i)$$

• Observables:

$$\mathcal{F}_{i} \equiv \frac{\int d\Phi_{3} |A_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |A(\Phi_{3})|^{2} + \int d\Phi_{3} |\bar{A}(\Phi_{3})|^{2}} \qquad \mathcal{A}_{CP}^{i} \equiv \frac{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} - \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}{\int d\Phi_{3} |\bar{A}_{i}(\Phi_{3})|^{2} + \int d\Phi_{3} |A_{i}(\Phi_{3})|^{2}}$$

Dalitz plot analysis with $B^+ \rightarrow \pi^+ \pi^- \pi^+$

LHCb-PAPER-2019-017 LHCb-PAPER-2019-018

• Dalitz plot analysis with 20594 ±1569 events (3 fb⁻¹ data)

• Resonant contributions:

 $\rho - \omega, f_0(500), f_0(980)$, region: S-P wave interference $f_2(1270)$ region: D-S, P wave interference High mass: $KK - \pi\pi$ rescattering

• Three different methods to describe S-wave: Isobar model, K-Matrix approach, quasi model independent approach

New CP violation patterns

• CP violation around $\rho(770)$ pole well described by the three S-wave models

- Over 25σ significance for CPV due to S-P interference, first observation
- CP violation sign flips around $\rho(770)$ pole and over helicity angle

Sign of CP violation

• CPV comes from inference of two processes:

$$A = a_1 e^{i(\delta_1 + \phi_1)} + a_2 e^{i(\delta_2 + \phi_2)} \qquad \bar{A} = a_1 e^{i(\delta_1 - \phi_1)} + a_2 e^{i(\delta_2 - \phi_2)}$$
$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

• Weak phases change sign under CP operation while strong phases don't

$$A_{CP} = \frac{|A|^2 - |\bar{A}|^2}{|A|^2 + |\bar{A}|^2} = \frac{2a_1a_2h_1(\theta)h_2(\theta)\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)}{a_1^2h_1^2(\theta) + a_2^2h_2^2(\theta) + 2a_1a_2h_1(\theta)h_2(\theta)\cos(\delta_1 - \delta_2)\cos(\phi_1 - \phi_2)}$$

A general and user-friendly partial wave analysis framework

Hao Cai¹, Chen Chen⁵, Yi Jiang², Pei-Rong Li³, Yin-Rui Liu², Xiao-Rui Lyu², Rong-Gang Ping⁴, Wenbin Qian², Mengzhen Wang⁵, Zi-Yi Wang², Liming Zhang⁵, Yang-Heng Zheng² ¹WHU, ²UCAS, ³LZU, ⁴IHEP, ⁵THU

- Several independent fitters developed previously for dedicated analyses: e.g. $Z(4430)^+$ and pentaquark search, $B^0 \rightarrow \overline{D^0} \pi^+ \pi^-$ analysis etc.
- Joint efforts + experience on previous analyses + very good students

Features

• Based on Tensor-Flow v2

• Fast

• General

- GPU based
- Vectorized calculation
- Automatic differentiation
- Custom model available
- Simple configuration file

• Easy to use

- Automatics process
- All necessary functions implemented
- Open access and well supported <u>https://gitlab.com/jiangyi15/tf-pwa</u>

Framework

The LHCb upgrade plans

Physics potential for LHCb upgrade

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$	0.1 [274]	0.025	0.036	0.007	_
$R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$	$0.1 \ 275$	0.031	0.032	0.008	_
R_{ϕ},R_{pK},R_{π}		0.08,0.06,0.18	-	0.02,0.02,0.05	_
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	_	1°	_
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ 167	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \to J/\psi\phi$	49 mrad 44	$14 \mathrm{\ mrad}$	-	$4 \mathrm{mrad}$	22 mrad [610]
ϕ_s , with $B_s^0 \to D_s^+ D_s^-$	170 mrad 49	35 mrad	_	$9 \mathrm{mrad}$	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi\phi$	154 mrad 94	39 mrad	_	11 mrad	Under study [611]
$a_{ m sl}^s$	$33 imes 10^{-4}$ [211]	$10 imes10^{-4}$	_	$3 imes 10^{-4}$	_
$ V_{ub} / V_{cb} $	6% [201]	3%	1%	1%	_
$B^0_s, B^0 { ightarrow} \mu^+ \mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	_	10%	21% [612]
$\tau_{B^0_c \to \mu^+ \mu^-}$	22% 264	8%	_	2%	
$S_{\mu\mu}$		_	_	0.2	_
$b \to c \ell^- \bar{\nu_l} \text{ LUV studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [613]	$1.7 imes 10^{-4}$	$5.4 imes10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	$4.3 imes 10^{-5}$	$3.5 imes 10^{-4}$	$1.0 imes 10^{-5}$	_
$x\sin\phi$ from $D^0 \to K^+\pi^-$	13×10^{-4} 228	$3.2 imes 10^{-4}$	$4.6 imes10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays	_	$(K3\pi)~4.0\times 10^{-5}$	$(K_{\rm S}^0\pi\pi)~1.2\times 10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	_

CKM triangles in two decades

- With assumptions on improvements on lattice plus measurements from Belle II
- Central values at current fit values

Conclusion

2021/05/01

29

Efforts in B_s decays

- $B_s^0 \to \overline{D^0} K^+ K^- \nexists B_s^0 \to \overline{D^{*0}} \phi$: golden channels for measuring γ in B_s decays
- Sensitivity studies performed: 10-15° with LHCb Run 1+2 data

- Uncertainties of γ in B_s decays still large, potential improvements
- Important to understand discrepancies of γ measured from B^0 and B_s decays

Finding these decays in LHCb

- $B^0 \rightarrow D^{\overline{0}}KK$ and $B_s \rightarrow D^{\overline{0}}KK$ decays
 - Time-Dependent Dalitz analyses to access CKM angle γ and $\beta_{(s)}$
 - Not only probe sin2β_(s), but also cos2β_(s)
 - Dalitz structures interesting for charm spectroscopy studies
- $B_s \rightarrow D^{(*)} \Phi$ decays: special cases where final states are in CP eigenstates

 Not only on B_s decays, efforts also ongoing to use new methods to measure old golden channels (EPJC78 (2018) 121)

• Fit fractions:

Component	lsobar	K-matrix	QMI
$ ho(770)^{0}$	$55.5 \pm 0.6 \pm 0.7 \pm 2.5$	$56.5 \pm 0.7 \pm 1.5 \pm 3.1$	$54.8 \pm 1.0 \pm 1.9 \pm 1.0$
$\omega(782)$	$0.50 \pm 0.03 \pm 0.03 \pm 0.04$	$0.47 \pm 0.04 \pm 0.01 \pm 0.03$	$0.57 \pm 0.10 \pm 0.12 \pm 0.12$
$f_2(1270)$	$9.0 \pm 0.3 \pm 0.8 \pm 1.4$	$9.3 \pm 0.4 \pm 0.6 \pm 2.4$	$9.6 \pm 0.4 \pm 0.7 \pm 3.9$
$ ho(1450)^{0}$	$5.2 \pm 0.3 \pm 0.4 \pm 1.9$	$10.5 \pm 0.7 \pm 0.8 \pm 4.5$	$7.4 \pm 0.5 \pm 3.9 \pm 1.1$
$ ho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.5 \pm 0.1 \pm 0.1 \pm 0.4$	$1.0 \pm 0.1 \pm 0.5 \pm 0.1$
S-wave	$25.4 \pm 0.5 \pm 0.7 \pm 3.6$	$25.7 \pm 0.6 \pm 2.6 \pm 1.4$	$26.8 \ \pm 0.7 \ \pm 2.0 \ \pm 1.0$

• Dominant contributions from S-wave and $\rho(770)$

• CP asymmetries:

Component	lsobar	K-matrix	QMI
$\rho(770)^{0}$	$+0.7 \pm 1.1 \pm 1.2 \pm 1.5$	$+4.2 \pm 1.5 \pm 2.6 \pm 5.8$	$+4.4 \pm 1.7 \pm 2.3 \pm 1.6$
$\omega(782)$	$-4.8 \pm 6.5 \pm 6.6 \pm 3.5$	$-6.2 \pm 8.4 \pm 5.6 \pm 8.1$	$-7.9 \pm 16.5 \pm 14.2 \pm 7.0$
$f_2(1270)$	$+46.8 \pm 6.1 \pm 3.6 \pm 4.4$	$+42.8 \pm 4.1 \pm 2.1 \pm 8.9$	$+37.6 \pm 4.4 \pm 6.0 \pm 5.2$
$ ho(1450)^{0}$	$-12.9 \pm 3.3 \pm 7.0 \pm 35.7$	$+9.0 \pm 6.0 \pm 10.8 \pm 45.7$	$-15.5 \pm 7.3 \pm 14.3 \pm 32.2$
$ ho_3(1690)^0$	$-80.1 \pm 11.4 \pm 13.5 \pm 24.1$	$-35.7 \pm 10.8 \pm 8.5 \pm 35.9$	$-93.2 \pm 6.8 \pm 8.0 \pm 38.1$
S-wave	$+14.4 \pm 1.8 \pm 2.1 \pm 1.9$	$+15.8 \pm 2.6 \pm 2.1 \pm 6.9$	$+15.0 \pm 2.7 \pm 4.2 \pm 7.0$

• Large CPV from S-wave and $f_2(1270)$ (first observation)