Class－I $B_{q}^{0} \rightarrow D_{q}^{(*)-} L^{+}$decays at NNLO

and possible New Physics

李新强

华中师范大学

Tobias Huber，Susanne Kränkl，Xin－Qiang Li，1606．02888
Fang－Min Cai，Wei－Jun Deng，Xin－Qiang Li，Ya－Dong Yang， 2103.04138
第三届重味物理和量子色动力学研讨会，南开，2021／05／01

Outline

\square Introduction
Class－I $\overline{\boldsymbol{B}}_{q}^{\mathbf{0}} \rightarrow \mathbf{D}_{q}^{(*)+} \boldsymbol{L}^{-}$
$b \rightarrow c \bar{u} d(s)$

\square NNLO predictions at leading power in QCDF／SCET
－Possible New Physics effects from four－quark operators
－Summary

Introduction

Why hadronic B decays

\square direct access to the CKM parameters， especially to the three angles of UT．

\square further insight into strong－interaction effects involved in these decays．

\square Thanks to exp．\＆theo．，entering a precision flavor era！

Effective Hamiltonian for B decays

\square For hadronic decays：simplicity of weak interactions overshadowed by complex QCD effects！

\square Starting point $\mathcal{H}_{\text {eff }}=-\mathcal{L}_{\text {eff }}$ ：obtained after

$$
\mathcal{L}_{\mathrm{eff}}=-\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p b} V_{p D}^{*}\left(C_{1} \mathcal{O}_{1}+C_{2} \mathcal{O}_{2}+\sum_{i=\mathrm{pen}} C_{i} \mathcal{O}_{i, \mathrm{pen}}\right)
$$ integrating out the heavy d．o．f．$\left(m_{W, Z, t} \gg m_{b}\right)$ ；

［Buras，Buchalla，Lautenbacher＇96；Chetyrkin，Misiak，Munz＇98］
\square Wilson coefficients $\boldsymbol{C}_{\boldsymbol{i}}$ ：all physics above m_{b} ；perturbatively
 calculable，and NNLL program now complete；［Gorbahn，Haisch＇04］

Hadronic matrix elements

\square Decay amplitude for a given decay mode:

$$
\mathcal{A}(\bar{B} \rightarrow f)=\sum_{i}\left[\lambda_{\mathrm{CKM}} \times C \times\langle f| \mathcal{O}|\bar{B}\rangle_{\mathrm{QCD}+\mathrm{QED}}\right]_{i}
$$

$\boldsymbol{\square}\left\langle\boldsymbol{M}_{\mathbf{1}} \boldsymbol{M}_{\mathbf{2}}\right| \boldsymbol{\mathcal { O }}_{\boldsymbol{i}}|\overline{\boldsymbol{B}}\rangle$: depend on spin and parity of $M_{1,2}$; final-state re-scattering introduces strong phases, and hence non-zero direct CPV; \quad A quite difficult, multi-scale, strong-interaction problem!
\square Different methods for dealing with $\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|\bar{B}\rangle$:

- Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET,

Symmetries of QCD: Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries,
[Zeppenfeld, ' 81
London, Gronau, Rosner, He, Chiang, Cheng et al.]

- QCDF: systematic framework to all orders in α_{s}, but limited by $1 / m_{b}$ corrections. [BBNs '99-03]

$+O\left(1 / m_{\mathrm{b}}\right)$
Class-I B decays into heavy-light final states and possible New Physics

Soft－collinear factorization from SCET

－QCDF formula：based on diagrammatic factorization（method of regions， combining $1 / m_{b}$ expansion with light－cone expansion for hard processes；
［Lepage，Brodsky＇80］
－SCET：a suitable framework for studying factorization and re－summation for processes involving light but energetic particles；［Bauer etal．＇00；Beneke etal．＇02；Becher，Broggio，Ferroglia＇14］

ㅁ For a two－body decay：simple kinematics，but complicated dynamics with several typical scales；

－low－virtuality modes：
＊HQET fields：$p-m_{b} v \sim \mathcal{O}(\Lambda)$
＊soft spectators in B meson：
$p_{s}^{\mu} \sim \Lambda \ll m_{b}, \quad p_{s}^{2} \sim \mathcal{O}\left(\Lambda^{2}\right)$
＊collinear quarks and gluons in pion： $E_{c} \sim m_{b}, \quad p_{c}^{2} \sim \mathcal{O}\left(\Lambda^{2}\right)$
－high－virtuality modes：
＊hard modes： （heavy quark + collinear）${ }^{2} \sim \mathcal{O}\left(m_{b}^{2}\right)$
＊hard－collinear modes： （soft + collinear $)^{2} \sim \mathcal{O}\left(m_{b} \Lambda\right)$
$\pi^{\pi^{+}} \square$ SCET point of view：introduce different fields for different momentum regions；
\longrightarrow achieve soft－collinear factorization via QFT machinery！［Beneke，1501．07374］

Soft－collinear factorization from SCET

\square SCET diagrams reproduce precisely QCD diagrams in collinear \＆soft momentum regions

\square For hard kernel $\boldsymbol{T}^{\boldsymbol{I}}$ ：one－step matching， $\mathrm{QCD} \rightarrow \operatorname{SCET}_{\mathrm{I}}(\mathrm{hc}, \mathrm{c}, \mathrm{s})$ ！

\square For hard kernel $\boldsymbol{T}^{I I}$ ：two－step matching， $\mathrm{QCD} \rightarrow \operatorname{SCET}_{\mathrm{I}}(\mathrm{hc}, \mathrm{c}, \mathrm{s}) \rightarrow \operatorname{SCET}_{\mathrm{II}}(\mathrm{c}, \mathrm{s})$ ！

ㅁ SCET result exactly the same as QCDF，but more apparent \＆efficient；［Beneke，1501．07374］

Status of the NNLO calculation of $T^{I} \& T^{I I}$

\square For each Q_{i} insertion，both tree $\&$ penguin topologies，and contribute to both $T^{I} \& T^{I I}$ ．

$$
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq F^{B M_{1}} T_{i}^{\prime} \otimes \phi_{M_{2}}+T_{i}^{\prime \prime} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

Status of the NNLO calculation of $T^{I} \& T^{I I}$

\square Complete NNLO calculation for $T^{I} \& T^{I I}$ at leading power in QCDF／SCET now complete；
\square Soft－collinear factorization at 2－loop established via explicit calculations；
\square For tree amplitudes，cancellation between $T^{I} \& T^{I I}$ ；

$$
\begin{aligned}
\alpha_{1}(\pi \pi)= & 1.009+[0.023+0.010 i]_{\mathrm{NLO}}+[0.026+0.028 i]_{\mathrm{NNLO}} \\
& -\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.014]_{\mathrm{LOsp}}+[0.034+0.027 i]_{\mathrm{NLOsp}}+[0 .\right. \\
= & 1.000_{-0.069}^{+0.029}+\left(0.011_{-0.050}^{+0.023}\right) i
\end{aligned}
$$

$$
-\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.014]_{\mathrm{LOsp}}+[0.034+0.027 i]_{\mathrm{NLOsp}}+[0.008]_{\mathrm{tw} 3}\right\} \alpha_{2}(\pi \pi)=0.220-[0.179+0.077 i]_{\mathrm{NLO}}-[0.031+0.050 i]_{\mathrm{NNLO}}
$$

$$
+\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.114]_{\mathrm{LOsp}}+[0.049+0.051 i]_{\mathrm{NLOsp}}+[0.067]_{\mathrm{ww} 3}\right\}
$$

$$
=0.240_{-0.125}^{+0.217}+\left(-0.077_{-0.078}^{+0.115}\right) i
$$

\square For leading－power QCD penguin amplitudes，cancellation between $\boldsymbol{Q}_{1,2}^{p} \boldsymbol{\&} \boldsymbol{Q}_{3-6,8 g}$

$$
\begin{aligned}
a_{4}^{u}(\pi \bar{K}) / 10^{-2}= & -2.87-[0.09+0.09 i]_{\mathrm{v}_{1}}+[0.49-1.32 i]_{\mathrm{P}_{1}}-[0.32+0.71 i]_{\mathrm{P}_{2}, \mathrm{Q}_{1,2}}+[0.33+0.38 i]_{\mathrm{P}_{2}, \mathrm{Q}_{3-6,8}} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.434}\right]\left\{[0.13]_{\mathrm{LO}}+[0.14+0.12 i]_{\mathrm{HV}}-[0.01-0.05 i]_{\mathrm{HP}}+[0.07]_{\mathrm{tw} 3}\right\} \\
= & \left(-2.12_{-0.29}^{+0.48}\right)+\left(-1.56_{-0.15}^{+0.29}\right) i,
\end{aligned}
$$

Class－I $\bar{B}_{q}^{0} \rightarrow D_{q}^{(*)+} \boldsymbol{L}^{-}$decays at NNLO in QCDF／SCET

$B \rightarrow D^{(*)} L$ decays
\square At quark－level：mediated by $b \rightarrow c \bar{u} d(s)$
all four flavors different from each other，no penguin operators \＆no penguin topologies！

\square For class－I decays：QCDF formula much simpler；
［Beneke，Buchalla，Neubert，Sachrajda＇99－＇03；Bauer，Pirjol，Stewart＇01］

$$
\begin{aligned}
& \mathcal{Q}_{2}=\bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) u \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b \\
& \mathcal{Q}_{1}=\bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) T^{A} u \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) T^{A} b
\end{aligned}
$$

$$
\begin{aligned}
\left\langle D_{q}^{(*)+} L^{-}\right| \mathcal{Q}_{i}\left|\bar{B}_{q}^{0}\right\rangle & =\sum_{j} F_{j}^{\bar{B}_{q} \rightarrow D_{q}^{(*)}}\left(M_{L}^{2}\right) \\
& \times \int_{0}^{1} d u T_{i j}(u) \phi_{L}(u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
\end{aligned}
$$

i）only color－allowed tree topology a_{1} ；
ii）spectator \＆annihilation are power－suppressed；
iii）annihilation absent in $B_{d(s)}^{0} \rightarrow D_{d(s)}^{-} K(\pi)^{+}$etal；
iv）they are theoretically simpler and cleaner！
－Hard kernel T：both NLO and NNLO results known；
［Beneke，Buchalla，Neubert，Sachrajda＇01；Huber，Kränkl，Li＇16］

$$
T=T^{(0)}+\alpha_{s} T^{(1)}+\alpha_{s}^{2} T^{(2)}+O\left(\alpha_{s}^{3}\right)
$$

Calculation of T ：

\square Matching QCD onto $\mathbf{S C E T}_{\mathbf{I}}$ ：［Huber，Kränkl，Li＇16］
m_{c} is also heavy，keep m_{c} / m_{b} fixed as $m_{b} \rightarrow \infty$ ， thus needing two sets of SCET operator basis．
$\left\langle\mathcal{Q}_{i}\right\rangle=\hat{T}_{i}\left\langle\mathcal{Q}^{\mathrm{QCD}}\right\rangle+\hat{T}_{i}^{\prime}\left\langle\mathcal{Q}^{\prime \mathrm{QCD}}\right\rangle+\sum_{a>1}\left[H_{i a}\left\langle\mathcal{O}_{a}\right\rangle+H_{i a}^{\prime}\left\langle\mathcal{O}_{a}^{\prime}\right\rangle\right]$
\square Renormalized on－shell QCD amplitudes：

$$
\begin{aligned}
\left\langle\mathcal{Q}_{i}\right\rangle= & \left\{A_{i a}^{(0)}+\frac{\alpha_{s}}{4 \pi}\left[A_{i a}^{(1)}+Z_{e x t}^{(1)} A_{i a}^{(0)}+Z_{i j}^{(1)} A_{j a}^{(0)}\right] \quad\right. \text { on QCD side } \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[A_{i a}^{(2)}+Z_{i j}^{(1)} A_{j a}^{(1)}+Z_{i j}^{(2)} A_{j a}^{(0)}+Z_{e x t}^{(1)} A_{i a}^{(1)}+Z_{e x t}^{(2)} A_{i a}^{(0)}+Z_{e x t}^{(1)} Z_{i j}^{(1)} A_{j a}^{(0)}\right. \\
& \left.+(-i) \delta m_{b}^{(1)} A_{i a}^{*(1)}+(-i) \delta m_{c}^{(1)} A_{i a}^{*(1)}\right) \\
& +\left(A \leftrightarrow A^{\prime}\right)\left\langle\mathcal{O}_{a}^{\prime}\right\rangle^{(0)} .
\end{aligned}
$$

Renormalized on－shell SCET amplitudes：

$$
\begin{aligned}
\left\langle\mathcal{O}_{a}\right\rangle=\left\{\delta_{a b}\right. & +\frac{\hat{\alpha}_{s}}{4 \pi}\left[M_{a b}^{(1)}+Y_{e x t}^{(1)} \delta_{a b}+Y_{a b}^{(1)}\right] \quad \text { on SCET side } \\
& +\left(\frac{\hat{\alpha}_{s}}{4 \pi}\right)^{2}\left[M_{a b}^{(2)}+Y_{e x t}^{(1)} M_{a b}^{(1)}+Y_{a c}^{(1)} M_{c b}^{(1)}+\hat{Z}_{\alpha}^{(1)} M_{a b}^{(1)}+Y_{e x t}^{(2)} \delta_{a b}\right. \\
& \left.\left.+Y_{e x t}^{(1)} Y_{a b}^{(1)}+Y_{a b}^{(2)}\right]+\mathcal{O}\left(\hat{\alpha}_{s}^{3}\right)\right\}\left\langle\mathcal{O}_{b}\right\rangle^{(0)},
\end{aligned}
$$

Calculation of T ：

$$
T=T^{(0)}+\alpha_{s} T^{(1)}+\alpha_{s}^{2} T^{(2)}+O\left(\alpha_{s}^{3}\right)
$$

ㅁ $A_{i 1}^{(0)}$ ：

－ $\boldsymbol{A}_{\boldsymbol{i 1}}^{(\mathbf{1}) \boldsymbol{n f}}$ ：［Beneke，Buchalla，Neubert，Sachrajda＇01］

ㅁ $\boldsymbol{A}_{\boldsymbol{i 1}}^{(\mathbf{2}) \boldsymbol{n f}}$ ：［Huber，Kränkl，Li＇16］

$\boldsymbol{\mathcal { O }}(70)$ two－loop two－scale non－factorizable QCD diagrams；their calculations need advanced analytical techniques！［Huber，Kränkl＇15］

Calculation of T ：

\square Master formulas for hard kernels：
Complete operator basis under renormalization：

\square Factorizable QCD and SCET diagrams：

$$
\begin{aligned}
& \mathcal{Q}_{1}^{p}=\bar{p} \gamma^{\mu}\left(1-\gamma_{5}\right) T^{A} b \bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) T^{A} u, \\
& \mathcal{Q}_{2}^{p}=\bar{p} \gamma^{\mu}\left(1-\gamma_{5}\right) b \bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) u, \\
& E_{1}^{(1)}=\left[\bar{c} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\left(1-\gamma_{5}\right) T^{A} b\right]\left[\bar{u} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho}\left(1-\gamma_{5}\right) T^{A} d\right]-16 Q_{1}^{c}, \\
& E_{2}^{(1)}=\left[\bar{c} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\left(1-\gamma_{5}\right) b\right]\left[\bar{\psi} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho}\left(1-\gamma_{5}\right) d\right]-16 Q_{2}^{c} \text {, } \\
& E_{1}^{(2)}=\left[\bar{c} \gamma^{\mu} \gamma^{\mu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\lambda}\left(1-\gamma_{5}\right) T^{A} b\right]\left[\overline{[} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\lambda}\left(1-\gamma_{5}\right) T^{A} d\right]-20 E_{1}^{(1)}-256 Q_{1}^{c} \\
& E_{1}^{(2)}=\left[\bar{c} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{1}\left(1-\gamma_{5}\right) b\right]\left[\overline{[} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\lambda}\left(1-\gamma_{5}\right) d\right]-20 E_{2}^{(1)}-256 Q_{2}^{c} \text {. } \\
& \text { evanescent operators }
\end{aligned}
$$

fact．2－loop

fact．1－loop
\square Renormalization constants of SCET operators：

Decay amplitudes for $B_{q}^{0} \rightarrow D_{q}^{-} L^{+}$

－Color－allowed tree amplitude：

$$
\begin{aligned}
& a_{1}\left(D^{+} L^{-}\right)=\sum_{i=1}^{2} C_{i}(\mu) \int_{0}^{1} d u\left[\hat{T}_{i}(u, \mu)+\hat{T}_{i}^{\prime}(u, \mu)\right] \Phi_{L}(u, \mu), \\
& a_{1}\left(D^{*+} L^{-}\right)=\sum_{i=1}^{2} C_{i}(\mu) \int_{0}^{1} d u\left[\hat{T}_{i}(u, \mu)-\hat{T}_{i}^{\prime}(u, \mu)\right] \Phi_{L}(u, \mu),
\end{aligned}
$$

Numerical result：

$$
\begin{aligned}
a_{1}\left(D^{+} K^{-}\right) & =1.025+[0.029+0.018 i]_{\mathrm{NLO}}+[0.016+0.028 i]_{\mathrm{NNLO}} \\
& =\left(1.069_{-0.012}^{+0.009}\right)+\left(0.046_{-0.015}^{+0.023}\right) i,
\end{aligned}
$$

－both NLO and NNLO add always constructively to LO result！
\bullet NNLO corrections quite small in real（2\％），but rather large in imaginary part（60\％）．
within QCDF／SCET，imaginary part appears firstly at NLO term and the NLO result is
color－suppressed and \propto small $C_{1}=-0.29$ ，while the NNLO term $\propto C_{2}=1.01$ ．

Scя

Due to perturbative truncation，a_{1} depends on the renormalization scale．

－blue：pole scheme for $\boldsymbol{m}_{\boldsymbol{c}}$ and $\boldsymbol{m}_{\boldsymbol{b}}$
－red：$\overline{\mathrm{MS}}$ scheme for m_{c} and \boldsymbol{m}_{b}
＞scale dependence＠NNLO reduced for the real part，but not so obvious for the imaginary part．
＞dependence on the b －and c －quark mass scheme is quite small，especially for the real part．

$$
\begin{array}{|l|}
\hline a_{1}\left(D^{+} K^{-}\right)=\left(1.069_{-0.012}^{+0.009}\right)+\left(0.046_{-0.015}^{+0.023}\right) i, \\
a_{1}\left(D^{+} \pi^{-}\right)=\left(1.072_{-0.011}^{+0.011}\right)+\left(0.043_{-0.0024}^{+0.02}\right) i, \\
a_{1}\left(D^{*+} K^{-}\right)=\left(1.068_{-0.012}^{+0.010}\right)+\left(0.034_{-0.011}^{+0.011}\right) i \\
a_{1}\left(D^{*+} \pi^{-}\right)=\left(1.071_{-0.013}^{+0.012}\right)+\left(0.032_{-0.010}^{+0.016}\right) i . \\
\hline
\end{array}
$$

\square For different decay modes：quasi－universal，with small process－dep．from non－fact．correction．

Absolute branching ratios for $B_{q}^{0} \rightarrow D_{q}^{-} L^{+}$

$\square B \rightarrow D^{(*)}$ transition form factors：

Precision results available based on LQCD \＆LCSR
calculations，together with data on $B_{q}^{0} \rightarrow D_{q}^{-} l^{+} v$ ；

［Bernlochner，Ligeti，Papucci，Robinson＇17；Bordone，Gubernari，Jung，van Dyk＇19

－35－ $3 \rightarrow D I \bar{v}_{1}$	Decay mode	LO	NLO	NNLO	Ref．［36］	Exp．［7，8］
＂ $30{ }^{30} \quad B \rightarrow D \tau \bar{v}_{\tau}$	$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	4.07	$4.32_{-0.42}^{+0.23}$	$4.43_{-0.41}^{+0.20}$	$3.93_{-0.42}^{+0.43}$	2.65 ± 0.15
3 	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	3.65	$3.88{ }_{-0.41}^{+0.27}$	$4.00_{-0.41}^{+0.25}$	$3.45_{-0.50}^{+0.53}$	2.58 ± 0.13
E15	$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	10.63	$11.28_{-1.23}^{+0.84}$	$11.59_{-1.21}^{+0.79}$	$10.42_{-1.20}^{+1.24}$	7.6 ± 1.2
${ }_{\sim}^{\circ} 10$	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	9.99	$10.61_{-1.56}^{+1.35}$	$10.93_{-1.57}^{+1.35}$	$9.24_{-0.71}^{+0.72}$	6.0 ± 0.8
－Bernlochner，Ligeti，Papucti，Robinson＇17	${ }^{-\bar{B}^{0} \rightarrow D^{+} K^{-}}$	3.09	$3.28_{-0.31}^{+0.16}$	$3.38_{-0.30}^{+0.13}$	$3.01-0.31$	2.19 ± 0.13
$\begin{array}{llllll}1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 \\ & & & w & & \end{array}$	$\bar{B}^{0} \rightarrow D^{*+} K^{-}$	2.75	$2.92{ }_{-0.30}^{+0.19}$	$3.02_{-0.30}^{+0.18}$	$2.59_{-0.37}^{+0.39}$	2.04 ± 0.47
\square Updated predictions vs data：	$\bar{B}^{0} \rightarrow D^{+} K^{*-}$	5.33	$5.65{ }_{-0.64}^{+0.47}$	$5.788_{-0.63}^{+0.44}$	$5.25_{-0.63}^{+0.65}$	4.6 ± 0.8
［Huber，Kränkl，Li＇16；Cai，Deng，Li，Yang＇21］	${ }^{+\cdots \cdots \cdots \cdots}{ }^{0}$	4.10	4．35－0．4．	4．47－0．0．21	4．3－1．36	－
$\left\|V_{c b}\right\|$ and $B_{d, s} \rightarrow D_{d, s}^{(*)}$ form factors	$\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}$	3.12	$3.322_{-0.32}^{+0.17}$	$3.42_{-0.31}^{+0.14}$	$3.344_{-0.90}^{+1.04}$	1.92 ± 0.22

Non－leptonic／semi－leptonic ratios

\square Non－leptonic／semi－leptonic ratios ：［Bjorken＇89；Neubert，Stech＇97；Beneke，Buchalla，Neubert，Sachrajda＇01］

$$
R_{(s) L}^{(*)} \equiv \frac{\Gamma\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+} L^{-}\right)}{d \Gamma\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+} \ell^{-} \bar{\nu}_{\ell}\right) / d q^{2} \frac{1 q^{2}=\ldots .2}{2}}=6 \pi^{2}\left|V_{u q}\right|^{2} f_{L}^{2}\left|a_{1}\left(D_{(s)}^{(*)+} L^{-}\right)\right|^{2} X_{L}^{(*)}
$$

－Updated predictions vs data：［Huber，Kränkl，Li＇16；Cai，Deng，Li，Yang＇21］

$R_{(s) L}^{(*)}$	LO	NLO	NNLO	Exp．	Deviation（ σ ）
R_{π}	1.01	$1.07_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.74 ± 0.06	5.4
R_{π}^{*}	1.00	$1.06{ }_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.80 ± 0.06	4.5
R_{ρ}	2.77	$2.94{ }_{-0.19}^{+0.19}$	$3.02_{-0.18}^{+0.17}$	2.23 ± 0.37	1.9
R_{K}	0.78	0．83－0．033	0.85	0．62	4.4
R_{K}^{*}	0.72	$0.76{ }_{-0.03}^{+0.03}$	$0.79_{-0.02}^{+0.01}$	0.60 ± 0.14	1.3
$R_{K^{*}}$	1.41	$1.50{ }_{-0.11}^{+0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6
${ }^{\sim}$	1.01	$1.07^{10.04}$			4.4
$R_{s K}$	0.78	$0.83{ }_{-0.03}^{+0.03}$	$0.85_{-0.02}^{+0.01}$	0.46 ± 0.06	6.3

free from uncertainties from
$\left|V_{c b}\right| \& B_{d, s} \rightarrow D_{d, s}^{(*)}$ form factors．
\square For a rough estimate：

$$
\begin{aligned}
& \frac{B r^{E x p}}{B r^{S M}} \simeq \frac{\left|a_{1}^{B S M}\right|^{2}}{\left|a_{1}^{S M}\right|^{2}}=0.6 \\
\Rightarrow & \frac{a_{1}^{B S M}}{a_{1}^{S M}} \simeq 0.77=1-0.23 \\
= & \frac{a_{1}^{S M}+\delta a_{1}^{B S M}}{a_{1}^{S M}} \simeq 1+\frac{\delta a_{1}^{B S M}}{a_{1}^{S M}} \\
\Rightarrow & \delta a_{1}^{B S M} \simeq-0.2
\end{aligned}
$$

Power corrections

\square Sources of sub－leading power corrections：［Beneke，
Buchalla，Neubert，Sachrajda＇01；Bordone，Gubernari，Huber，Jung，van Dyk＇20］

$$
\begin{aligned}
\left\langle D_{q}^{(*)+} L^{-}\right| \mathcal{Q}_{i}\left|\bar{B}_{q}^{0}\right\rangle= & \sum_{j} F_{j}^{\bar{B}_{q} \rightarrow D_{q}^{(*)}}\left(M_{L}^{2}\right) \\
& \times \int_{0}^{1} d u T_{i j}(u) \phi_{L}(u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
\end{aligned}
$$

\square Scaling of the leading－power contribution：［BBNS＇01］

＞Annihilation topologies；

$$
\mathcal{A}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right) \sim G_{F} m_{b}^{2} F^{B \rightarrow D}(0) f_{\pi} \sim G_{F} m_{b}^{2} \Lambda_{\mathrm{QCD}}
$$

$>\propto \frac{C_{1}}{a_{1}} \simeq-\frac{1}{3}$ ，all are ESTIMATED to be power－suppressed；not chirality－ enhanced due to $(V-A)(V-A)$ structure
＞Current exp．data could not be easily explained within the SM，at least within
＞Non－leading Fock－state contributions；

estimated

the QCDF／SCET framework．

$\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2}$

Possible New Physics effects

 from four－quark operators
Possible NP in $B_{q}^{0} \rightarrow D_{q}^{-} L^{+}$？

\square Possible NP four－quark operators with different Dirac structures：［Buras，Misiak，Urban＇00］

$$
\begin{array}{rlr}
\mathcal{L}_{\mathrm{WET}}=- & \frac{4 G_{F}}{\sqrt{2}} V_{c b} V_{u q}^{*}\left[\mathcal{C}_{1}^{S M}(\mu) \mathcal{Q}_{1}^{S M}+\mathcal{C}_{2}^{S M}(\mu) \mathcal{Q}_{2}^{S M}\right. & \text { SM current-current operators } \\
& \left.+\sum_{\substack{i=1,2 ; \\
j=1,2,3,4 .}}\left(\mathcal{C}_{i}^{V L L} \mathcal{Q}_{i}^{V L L}+\mathcal{C}_{i}^{V L R} \mathcal{Q}_{i}^{V L R}+\mathcal{C}_{i}^{S L R} \mathcal{Q}_{i}^{S L R}+\mathcal{C}_{j}^{S L L} \mathcal{Q}_{j}^{S L L}\right)\right]+L \leftrightarrow R \\
\mathcal{Q}_{1}^{V L L}=\left(\bar{c}_{\alpha} \gamma^{\mu} P_{L} b_{\beta}\right)\left(\bar{q}_{\beta} \gamma_{\mu} P_{L} u_{\alpha}\right) & \text { NP four-quark operators } \\
\mathcal{Q}_{2}^{V L L}=\left(\bar{c}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha}\right)\left(\bar{q}_{\beta} \gamma_{\mu} P_{L} u_{\beta}\right) & \mathcal{Q}_{1}^{V L R}=\left(\bar{c}_{\alpha} \gamma^{\mu} P_{L} b_{\beta}\right)\left(\bar{q}_{\beta} \gamma_{\mu} P_{R} u_{\alpha}\right) \\
\mathcal{Q}_{1}^{S L L}=\left(\bar{c}_{\alpha} P_{L} b_{\beta}\right)\left(\bar{q}_{\beta} P_{L} u_{\alpha}\right) & \mathcal{Q}_{2}^{V L R}=\left(\bar{c}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha}\right)\left(\bar{q}_{\beta} \gamma_{\mu} P_{R} u_{\beta}\right) \\
\mathcal{Q}_{2}^{S L L}=\left(\bar{c}_{\alpha} P_{L} b_{\alpha}\right)\left(\bar{q}_{\beta} P_{L} u_{\beta}\right) & \mathcal{Q}_{1}^{S L R}=\left(\bar{c}_{\alpha} P_{L} b_{\beta}\right)\left(\bar{q}_{\beta} P_{R} u_{\alpha}\right) \\
\mathcal{Q}_{3}^{S L L}=\left(\bar{c}_{\alpha} \sigma^{\mu \nu} P_{L} b_{\beta}\right)\left(\bar{q}_{\beta} \sigma_{\mu \nu} P_{L} u_{\alpha}\right) & \mathcal{Q}_{2}^{S L R}=\left(\bar{c}_{\alpha} P_{L} b_{\alpha}\right)\left(\bar{q}_{\beta} P_{R} u_{\beta}\right) \\
\mathcal{Q}_{4}^{S L L} & =\left(\bar{c}_{\alpha} \sigma^{\mu \nu} P_{L} b_{\alpha}\right)\left(\bar{q}_{\beta} \sigma_{\mu \nu} P_{L} u_{\beta}\right) &
\end{array}
$$

totally 20 linearly－independent operators，and can be further split into 8 separate sectors！

Possible sources of these NP operators

\square Possible tree－level mediators：
＞For neutral mediators，necessarily couple to FCNC at tree level；
 Mediators \square excluded by FCNC processes！
$>$ For charged mediators：colorless or colored（limited by di－jet resonance searches）
\square For VLL，VRR，VLR，VRL sectors： generated by a colorless charged gauge boson $\mathrm{A}^{+}($spin－1）；

Charged

Neutral

［Bordone，Greljo，Marzocca，2103．10332］
－For SLL，SRR，SLR，SRL sectors： generated by a colorless charged scalar H＋（spin－0）；

Possible sources of these NP operators

－Both 1－loop matching conditions \＆2－Ioop QCD ADMs known；［Buras，Misiak，Urban＇00；Buras，Girrbach＇12］

$$
\begin{array}{ll}
C_{1}^{\mathrm{SLR}}(\mu)=3 \frac{\alpha_{s}}{4 \pi}, \\
C_{2}^{\mathrm{SLR}}(\mu)=1-\frac{\alpha_{s}}{4 \pi} \frac{3}{N}=1-\frac{\alpha_{s}}{4 \pi}, & \text { a colorless charged } \\
C_{1}^{\mathrm{SLL}}(\mu)=0, & \text { scalar } \mathrm{H}^{+} . \\
C_{2}^{\mathrm{SLL}}(\mu)=1, & \\
C_{3}^{\mathrm{SLL}}(\mu)=\frac{\alpha_{s}}{4 \pi}\left(-\frac{1}{2} \log \frac{M_{H}^{2}}{\mu^{2}}+\frac{3}{4}\right), & \\
C_{4}^{\mathrm{SLL}}(\mu)=\frac{\alpha_{s}}{4 \pi}\left(\frac{1}{2 N} \log \frac{M_{H}^{2}}{\mu^{2}}-\frac{3}{4 N}\right)=\frac{\alpha_{s}}{4 \pi}\left(\frac{1}{6} \log \frac{M_{H}^{2}}{\mu^{2}}-\frac{1}{4}\right) .
\end{array}
$$

$$
\begin{aligned}
& C_{1}^{\mathrm{VLL}}(\mu)=\frac{\alpha_{s}}{4 \pi}\left(-3 \log \frac{M_{A}^{2}}{\mu^{2}}+\frac{11}{2}\right) \\
& C_{2}^{\mathrm{VLL}}(\mu)=1+\frac{\alpha_{s}}{4 \pi}\left(\frac{3}{N} \log \frac{M_{A}^{2}}{\mu^{2}}-\frac{11}{2 N}\right)=1+\frac{\alpha_{s}}{4 \pi}\left(\log \frac{M_{A}^{2}}{\mu^{2}}-\frac{11}{6}\right)
\end{aligned}
$$

$$
C_{1}^{\mathrm{VLR}}(\mu)=\frac{\alpha_{s}}{4 \pi}\left(3 \log \frac{M_{A}^{2}}{\mu^{2}}+\frac{1}{2}\right)
$$ a colorless charged gauge boson A^{+}．

$C_{2}^{\mathrm{VLR}}(\mu)=1+\frac{\alpha_{s}}{4 \pi}\left(-\frac{3}{N} \log \frac{M_{A}^{2}}{\mu^{2}}-\frac{1}{2 N}\right)=1+\frac{\alpha_{s}}{4 \pi}\left(-\log \frac{M_{A}^{2}}{\mu^{2}}-\frac{1}{6}\right)$
\square RG evolution from down $M_{A, H}$ to m_{b} at NLL；
［Buras，Misiak，Urban＇00；Buras，Girrbach＇12］

$$
\begin{gathered}
\vec{C}\left(\mu_{b}\right)=\left(\mathbb{1}+\frac{\alpha_{s}\left(\mu_{b}\right)}{4 \pi} \hat{J}\right) \hat{U}^{(0)}\left(\mu_{b}, \mu_{\text {in }}\right)\left(\mathbb{1}-\frac{\alpha_{s}\left(\mu_{\text {in }}\right)}{4 \pi}\left(\vec{C}_{1}+\hat{J} \vec{C}_{0}\right)\right) \\
\hat{U}^{(0)}\left(\mu_{b}, \mu_{\text {in }}\right)=\hat{V}\left(\left[\frac{\alpha_{s}\left(\mu_{\text {in }}\right)}{\alpha_{s}\left(\mu_{b}\right)}\right]^{\frac{\hat{z}^{(0)}}{2 \beta_{0}}}\right)_{D} \hat{V}^{-1}
\end{gathered}
$$

Matrix elements of NP operators

$\square\left\langle D^{+} L^{-}\right| \mathcal{O}_{i}\left|\bar{B}^{\mathbf{0}}\right\rangle$ ：calculated in QCDF at leading－power in $1 / m_{b}$ ，but including $\mathcal{O}\left(\alpha_{s}\right)$ vertex correction．

NLO non－factorizable vertex corrections

＞With NLL Wilson coefficients and NLO matrix elements， un－physical scale－\＆scheme－dependences cancelled in the final decay amplitude．

Model－independent analysis

\square NP $C_{i}^{N P}$ ：real and take a CKM－like flavor structure for $b \rightarrow c \bar{u} d$ and $b \rightarrow c \bar{u} s$ transitions．

$$
\begin{aligned}
\mathcal{L}_{\mathrm{WET}}= & -\frac{4 G_{F_{i}}}{\sqrt{2}} \begin{aligned}
& V_{c b} V_{u q}^{*} V_{u}^{*} \\
&\left.+\sum_{\substack{i=1,2 ; \\
j=1,2,3,4}}\left(\mathcal{C}_{i}^{V L L}(\mu) \mathcal{Q}_{1}^{S M}+\mathcal{C}_{2}^{S M}(\mu) \mathcal{Q}_{2}^{S M}+\mathcal{C}_{i}^{V L R} \mathcal{Q}_{i}^{V L R}+\mathcal{C}_{i}^{S L R} \mathcal{Q}_{i}^{S L R}+\mathcal{C}_{j}^{S L L} \mathcal{Q}_{j}^{S L L}\right)\right]+L \leftrightarrow R
\end{aligned}
\end{aligned}
$$

\square Use 8 ratios to constrain allowed $C_{i}^{N P}$ ；
Note：different modes show different

$R_{(s) L}^{(*)}$	LO	NLO	NNLO	Exp．	Deviation (σ)
R_{π}	1.01	$1.07_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.74 ± 0.06	5.4
R_{π}^{*}	1.00	$1.06_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.80 ± 0.06	4.5
R_{ρ}	2.77	$2.99_{-0.19}^{+0.19}$	$3.02_{-0.18}^{+0.17}$	2.23 ± 0.37	1.9
R_{K}	0.78	$0.83_{-0.03}^{+0.03}$	$0.85_{-0.02}^{+0.01}$	0.62 ± 0.05	4.4
R_{K}^{*}	0.72	$0.76_{-0.03}^{+0.03}$	$0.79_{-0.01}^{+0.01}$	0.60 ± 0.14	1.3
$R_{K^{*}}$	1.41	$1.50_{-0.11}^{+0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6
$R_{s \pi}$	1.01	$1.07_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.72 ± 0.08	4.4
$R_{s K}$	0.78	$0.83_{-0.03}^{+0.03}$	$0.85_{-0.02}^{+0.01}$	0.46 ± 0.06	6.3

dependences on NP WCs！

$$
\begin{aligned}
& \left\langle\pi^{-}(q)\right| \bar{d} \gamma_{\mu} \gamma_{5} u|0\rangle=-i f_{\pi} q_{\mu} \\
& \left\langle\rho^{-}(q)\right| \bar{d} \gamma_{\mu} u|0\rangle=-i f_{\rho} m_{\rho} \epsilon_{\mu}^{*}
\end{aligned}
$$

$$
\left\langle D^{+}\right| \bar{c} q b\left|\bar{B}^{0}\right\rangle=\left(m_{B}^{2}-m_{D}^{2}\right) F_{0}^{B \rightarrow D}\left(q^{2}\right)
$$

$$
\left\langle D^{*+}\right| \bar{c} q \gamma_{5} b\left|\bar{B}^{0}\right\rangle=2 m_{D^{*}}\left(\epsilon^{*} \cdot q\right) A_{0}^{B \rightarrow D^{*}}\left(q^{2}\right)
$$

\section*{Analysis at m_{b} scale
 | R_{K} | 0.78 | $0.83_{-0.03}^{+0.03}$ | $0.85_{-0.02}^{+0.01}$ | 0.62 ± 0.05 | 4.4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $R_{s K}$ | 0.78 | $0.83_{-0.03}^{+0.03}$ | $0.85_{-0.02}^{+0.01}$ | 0.46 ± 0.06 | 6.3 |}

\square With only one NP $C_{i}^{N P}$ in each time，NP four－quark operators with three Dirac structures；

NP Coeff．	C．L．	R_{π}	R_{π}^{*}	R_{ρ}		R_{K}^{*}	$R_{K^{*}}$	$R_{s \pi}$		Combined
$C_{1}^{V L L}$	1σ	［－1．40，－0．847］	［－1．18，－0．626］	［－1．50，－0．267］	［－1．18，－0．662］	［－1．54，－0．145］	［－1．05，0．392］	［－1．57，－0．835］	［－2．12，－1．31］	\varnothing
	2σ	［－1．63，－0．656］	［－1．41，－0．426］	［－2．06，0．135］	［－1．42，－0．462］	［－2．41，0．402］	［－1．70，0．856］	［－1．92，－0．567］	［－2．55，－1．02］	［－1．41，－1．02］
$C_{2}^{V L L}$	1σ	［－0．237，－0．148］	［－0．205，－0．111］	［－0．254，－0．047］	［－0．198，－0．116］	［－0．261，－0．026］	［－0．183，0．070］	［－0．264，－0．146］	［－0．345，－0．226］	\varnothing
	2σ	［－0．273，－0．115］	［－0．244，－0．075］	［－0．340，0．024］	［－0．237，－0．081］	［－0．401，0．071］	［－0．288，0．155］	［－0．318，－0．099］	［－0．406，－0．176］	［－0．237，－0．176］
$C_{1}^{S R R}$	1σ	［－0．748，－0．418］	［－1．03，－0．502］	\varnothing	［－0．711，－0．368］	［－1．50，－0．133］	R	［－0．839，－0．412］	［－1．25，－0．712］	\varnothing
	2σ	［－0．867，－0．326］	［－1．23，－0．344］	R	［－0．854，－0．259］	［－2．32，0．395］	R	［－1．02，－0．283］	［－1．48，－0．556］	［－0．854，－0．556］
$C_{2}^{S R R}$	1σ	［－0．249，－0．139］	［－0．343，－0．167］	\varnothing	［－0．237，－0．123］	［－0．500，－0．044］	R	［－0．280，－0．137］	［－0．417，－0．237］	\varnothing
	2σ	［－0．289，－0．109］	［－0．410，－0．115］	R	［－0．285，－0．086］	［－0．773，0．132］	R	［－0．339，－0．094］	［－0．492，－0．185］	［－0．285，－0．185］
$C_{1}^{S R L}$	1σ	［0．487，0．873］	［0．585，1．20］	\varnothing	［0．429，0．829］	［0．155，1．75］	R	［0．480，0．979］	［0．830，1．46］	\varnothing
	2σ	［0．381，1．01］	［0．401，1．44］	R	［0．302，0．996］	［－0．460，2．71］	R	［0．330，1．18］	［0．648，1．72］	［0．648，0．996］
$C_{2}^{S R L}$	1σ	［0．139，0．249］	［0．167，0．343］	\varnothing	［0．123，0．237］	［0．044，0．500］	R	［0．137，0．280］	［0．237，0．416］	\varnothing
	2σ	［0．109，0．289］	［0．115，0．410］	R	［0．086， 0.285 ］	［－0．132，0．773］	R	［0．094，0．339］	［0．185，0．492］	［0．185， 0.285$]$

$$
\begin{aligned}
& \mathcal{Q}_{1,2}^{V L L}=\bar{c}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) u_{\alpha(\beta)} \\
&(\boldsymbol{V}-\boldsymbol{A}) \otimes(\boldsymbol{V}-\boldsymbol{A}) \\
& \mathcal{Q}_{1,2}^{S R L}= \bar{c}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta}\left(1-\gamma_{5}\right) u_{\alpha(\beta)} \\
&(\boldsymbol{S}+\boldsymbol{P}) \otimes(\boldsymbol{S}-\boldsymbol{P}) \\
& \mathcal{Q}_{1,2}^{S R R}= \bar{c}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta}\left(1+\gamma_{5}\right) u_{\alpha(\beta)} \\
&(\boldsymbol{S}+\boldsymbol{P}) \otimes(\boldsymbol{S}+\boldsymbol{P})
\end{aligned}
$$

＞Constraints on $C_{2}^{N P}$ much stronger than on $C_{1}^{N P}$ ：
$>C_{1}^{N P}$ suppressed by $1 / N_{C}$ at LO and further by $C_{F} / 4 \pi$ at NLO in QCDF；
$>$（Pseudo－）scalar operators associated with a chirally－enhanced factor $\frac{2 m_{L}^{2}}{\left(m_{b} \pm m_{c}\right)\left(m_{u}+m_{d, s}\right)}$ ；
＞NP operators with other Dirac structures already ruled out by combined constraints from 8 ratios；

Analysis at \boldsymbol{m}_{b} scale

ㅁ Keep only $C_{2}^{V L L}$ nonzero；
－SM： $\mathcal{C}_{1}\left(m_{b}\right)=-0.143$ and $\mathcal{C}_{2}\left(m_{b}\right)=1.058$

Analysis at \boldsymbol{m}_{b} scale

ㅁ Keep only $C_{2}^{S R L}$ nonzero；
－SM： $\mathcal{C}_{1}\left(m_{b}\right)=-0.143$ and $\mathcal{C}_{2}\left(m_{b}\right)=1.058$

Analysis at $\boldsymbol{m}_{\boldsymbol{b}}$ scale

\square Keep only $C_{2}^{S R R}$ nonzero；
－SM： $\mathcal{C}_{1}\left(m_{b}\right)=-0.143$ and $\mathcal{C}_{2}\left(m_{b}\right)=1.058$

Analysis at $\boldsymbol{m}_{\boldsymbol{b}}$ scale

\square Two NP operators with the same Dirac but different color structures；

$$
C_{2}^{N P}+C_{1}^{N P} / N_{C}
$$

$>$ Due to partial cancellation between $C_{2}^{N P} \& C_{1}^{N P}$ ，allowed regions potentially larger than in previous case．
＞For NP operators with other Dirac structures，no allowed regions even at the 2σ level．

Analysis at \boldsymbol{m}_{W} scale

\square Variable solutions：NP four－quark operators with the following three Dirac structures；
$\mathcal{Q}_{1,2}^{V L L}=\bar{c}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) u_{\alpha(\beta)}$
$(\boldsymbol{V}-\boldsymbol{A}) \otimes(\boldsymbol{V}-\boldsymbol{A})$
$\mathcal{Q}_{1,2}^{S R L}=\bar{c}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta}\left(1-\gamma_{5}\right) u_{\alpha(\beta)}$
$(\boldsymbol{S}+\boldsymbol{P}) \otimes(\boldsymbol{S}-\boldsymbol{P})$
$\mathcal{Q}_{1,2}^{S R R}=\bar{c}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta}\left(1+\gamma_{5}\right) u_{\alpha(\beta)}$
$(\boldsymbol{S}+\boldsymbol{P}) \otimes(\boldsymbol{S}+\boldsymbol{P})$
$\vec{C}\left(\mu_{b}\right)=\hat{U}\left(\mu_{b}, \mu_{W}\right) \vec{C}\left(\mu_{W}\right)$
What implications for the NP Wilson coefficients at the higher scale \boldsymbol{m}_{W} ？
\square With RG evolutions for $C_{i}^{N P}$ taken into account，the following regions obtained：

$$
C_{2}^{V L L}\left(M_{W}\right) \in[-0.220,-0.164] \quad \text { Vs } \quad C_{2}^{V L L}\left(m_{b}\right) \in[-0.237,-0.176]
$$

small RG evolution effect！

$$
\begin{array}{lll}
C_{2}^{S R L}\left(m_{W}\right) \in[0.091,0.139] & \text { Vs } & C_{2}^{S R L}\left(m_{b}\right) \in[0.185,0.285] \\
C_{2}^{S R R}\left(m_{W}\right) \in[-0.129,-0.084] & \text { VS } & C_{2}^{S R R}\left(m_{b}\right) \in[-0.285,-0.185]
\end{array}
$$

Case with a colorless gauge boson

\square Heff mediated by a colorless charged gauge boson A^{+}；

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}^{\text {gauge }}= & \frac{G_{F}}{\sqrt{2}} V_{c b} V_{u q}^{*}\left\{\lambda_{L L}(A)\left[C_{1}^{V L L}(\mu) Q_{1}^{V L L}(\mu)+C_{2}^{V L L}(\mu) Q_{2}^{V L L}(\mu)\right]\right. \\
& \left.+\lambda_{L R}(A)\left[C_{1}^{V L R}(\mu) Q_{1}^{V L R}(\mu)+C_{2}^{V L R}(\mu) Q_{2}^{V L R}(\mu)\right]+(L \leftrightarrow R)\right\}
\end{aligned}
$$

$$
i \frac{g_{2}}{\sqrt{2}} V_{i j} \gamma^{\mu} \delta_{\alpha \beta}\left[\Delta_{i j}^{L}(A) P_{L}+\Delta_{i j}^{R}(A) P_{R}\right]
$$

$$
\lambda_{L L}(A)=\frac{m_{W}^{2}}{m_{A}^{2}} \Delta_{c b}^{L}(A)\left(\Delta_{u q}^{L}(A)\right)^{*}, \quad \lambda_{L R}(A)=\frac{m_{W}^{2}}{m_{A}^{2}} \Delta_{c b}^{L}(A)\left(\Delta_{u q}^{R}(A)\right)^{*}
$$

\square With $m_{A}=1 \mathrm{TeV}$ ，1－\＆2－loop ADMs and 1－loop matching conditions：［Buras，Misiak，Urban＇ 00 ；Buras，
Girrbach＇12］

$$
\vec{C}\left(\mu_{b}\right)=\hat{U}\left(\mu_{b}, \mu_{W}\right) \hat{U}\left(\mu_{W}, \mu_{0}\right) \vec{C}\left(\mu_{0}\right)
$$

$\square 4$ NP parameters：$\lambda_{L L}(A), \lambda_{L R}(A), \lambda_{R R}(A), \lambda_{R L}(A)$ ；
＞Scenario I：only one effective coefficient nonzero；

$$
\lambda_{L L}(A) \in[-0.211,-0.154]
$$

$>$ Scenario II：$\Delta_{c b}^{L}(A)=\Delta_{c b}^{R}(A), \Delta_{u q}^{L}(A)=\Delta_{u q}^{R}(A) ;$
$\Longrightarrow \lambda_{L L}(A)=\lambda_{R R}(A)=\lambda_{L R}(A)=\lambda_{R L}(A)$
$>$ Scenario III：$\Delta_{c b}^{L}(A)=-\Delta_{c b}^{R}(A), \Delta_{u q}^{L}(A)=-\Delta_{u q}^{R}(A) ; \Longrightarrow \lambda_{L L}(A)=\lambda_{R R}(A)=-\lambda_{L R}(A)=-\lambda_{R L}(A)$

Case with a colorless gauge boson

\square Scenario I: only $\lambda_{L L}(A)$ nonzero; need A^{+}couplings to quarks being of $V-A$ structure!

Case with a colorless scalar

－Heff mediated by a colorless charged scalar H＋；

$$
\begin{array}{rlr}
\mathcal{H}_{\text {eff }}^{\text {scalar }}=-\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u q}^{*}\left\{\lambda_{L L}(H)\right. & {\left[C_{1}^{S L L}(\mu) Q_{1}^{S L L}(\mu)+C_{2}^{S L L}(\mu) Q_{2}^{S L L}(\mu)\right.} & i \frac{g_{2}}{\sqrt{2}} V_{i j} \delta_{\alpha \beta}\left[\Delta_{i j}^{L}(H) P_{L}+\Delta_{i j}^{R}(H) P_{R}\right] \\
& \left.+C_{3}^{S L L}(\mu) Q_{3}^{S L L}(\mu)+C_{4}^{S L L}(\mu) Q_{4}^{S L L}(\mu)\right] &
\end{array}
$$

\square With $m_{H}=1 \mathrm{TeV}$ ，1－\＆2－loop ADMs and 1－loop matching conditions：［Buras，Misiak，Urban＇ 00 ；Buras，
Girrbach＇12］

$$
\vec{C}\left(\mu_{b}\right)=\hat{U}\left(\mu_{b}, \mu_{W}\right) \hat{U}\left(\mu_{W}, \mu_{0}\right) \vec{C}\left(\mu_{0}\right)
$$

$$
\lambda_{R L}(H) \in[0.059,0.100]
$$

$\square 4$ NP parameters：$\lambda_{L L}(H), \lambda_{L R}(H), \lambda_{R R}(H), \lambda_{R L}(H)$ ；
＞Scenario I：only one effective coefficient nonzero；

$$
\lambda_{R R}(H) \in[-0.090,-0.054]
$$

H^{+}coupling to quarks either scalar or pseudo－scalar！
$>$ Scenario II：$\Delta_{c b}^{L}(\boldsymbol{H})=\Delta_{c b}^{R}(\boldsymbol{H}), \Delta_{\boldsymbol{u q}}^{L}(\boldsymbol{H})=\Delta_{\boldsymbol{u q}}^{R}(\boldsymbol{H}) ; \Longrightarrow \lambda_{L L}(\boldsymbol{H})=\lambda_{\boldsymbol{R} \boldsymbol{R}}(\boldsymbol{H})=\lambda_{L R}(\boldsymbol{H})=\lambda_{\boldsymbol{R L}}(\boldsymbol{H})$
$>$ Scenario III：$\Delta_{c b}^{L}(\boldsymbol{H})=-\Delta_{c b}^{R}(\boldsymbol{H}), \Delta_{u q}^{L}(\boldsymbol{H})=-\Delta_{u q}^{R}(\boldsymbol{H}) ; \Longrightarrow \lambda_{L L}(\boldsymbol{H})=\lambda_{R R}(\boldsymbol{H})=-\lambda_{L R}(\boldsymbol{H})=-\lambda_{R L}(\boldsymbol{H})$

Case with a colorless scalar

\square Scenario I：only $\lambda_{R L}(H)$ nonzero；need H^{+}couplings to quarks being of $S \pm P$ structure！

Case with a colorless scalar

\square Scenario I: only $\lambda_{R R}(H)$ nonzero; need H^{+}couplings to quarks being of $S \pm P$ structure!

Summary

－NNLO predictions for class－I $B_{q}^{0} \rightarrow D_{q}^{(*)-} L^{+}$decays at LP in QCDF／SCET complete．
$\square \mathcal{O}(4-5 \sigma)$ discrepancies observed between updated SM predictions and current exp．data； sub－leading power corrections in QCDF／SCET or possible NP beyond the SM？
\square Model－indep．analysis shows that only NP operators with 3 Dirac structures possible：
$\mathcal{Q}_{1,2}^{V L L}=\bar{c}_{\alpha} \gamma_{\mu}\left(1-\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta} \gamma^{\mu}\left(1-\gamma_{5}\right) u_{\alpha(\beta)}$

$$
\mathcal{Q}_{1,2}^{S R L}=\bar{c}_{\alpha}\left(1+\gamma_{5}\right) b_{\beta(\alpha)} \bar{q}_{\beta}\left(1-\gamma_{5}\right) u_{\alpha(\beta)}
$$

$(\boldsymbol{S}+\boldsymbol{P}) \otimes(\boldsymbol{S}-\boldsymbol{P})$
$(\boldsymbol{S}+\boldsymbol{P}) \otimes(\boldsymbol{S}+\boldsymbol{P})$
generated by a colorless charged gauge boson or by a colorless charged scalar．

Thank You for your attention！

