Inclusive search for $\Xi_{b c}$

Qin Qin（秦溱）

Huazhong University of Science and Technology
华中科技大学

合作者：施禹基，王伟，杨国贺，于福生，朱瑞林

The 3rd Workshop of Heavy Flavor Physics and QCD （May 1－3，2021）

Contents

- It is important to study $\Xi_{b c}$
- We propose a inclusive strategy to find $\Xi_{b c}$
- We will show it is reachable at LHCb

The quark model

- Old myth
- New life

Murry Gell-Mann 1969 Nobel Prize for physics

Three new milestones

－Observation of tetraquarks
［BESIII，Phys．Rev．Lett． 110 （2013）252001］
The Physics 2013 ＂Highlights of the Year＂（rank 1st）
－Observation of pentaquarks
［LHCb，Phys．Rev．Lett． 115 （2015）072001］
The Physics World 2015 ＂top－10 breakthroughs＂
－Observation of a double－charm baryon $\Xi_{c c}^{++}$
［LHCb，Phys．Rev．Lett． 119 （2017）112001］
国家科技部＂2017年度中国科学十大进展＂

"Periodic table of the hadrons"

Z_{c}, P_{c} : a new period
$\Xi_{c c}$: a new main group

Beyond stamp collecting

- Because of color confinement, properties of quarks are studied via hadrons
- Different types of hadrons provide different visual angles into QCD and also electroweak dynamics
e.g., doubly-heavy baryons have a unique structure, a bound state of a heavy 'diquark' and a light quark
analogous to a heavy meson, but also different: bosonic, sizable heavy element
e.g., the double-bottom tetraquark $T_{\left[q q^{\prime}\right]}^{\{b b\}}$ is expected to be below threshold and thus decay weakly
[Eichten,Quigg,1707.09575]

Who is to be shot next?

$\sigma\left(\Xi_{b c}\right)=37 \mathrm{nb}$ at 14 TeV LHCb

[X.G.Wu, et al 1101.1130]

	2011	2012	2018	2023	2029	2035
LHCb	Run I	Run II	Run III	Run IV	Run V	
Integrated luminosity	$1 \mathrm{fb}^{-1}$	$3 \mathrm{fb}^{-1}$	$9 \mathrm{fb}^{-1}$	$23 \mathrm{fb}^{-1}$	$50 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$

Trillions of $\Xi_{b c}$ will be produced @ LHCb Run3.

$$
T_{c c}: \text { [QQ, F.S.Yu,2008.08026] }
$$

$\Xi_{b c}$: this talk

Difficulties in experimental searches

- Production rate

- Detection efficiency -- small exclusive branching ratios

channels	Γ / GeV	\mathcal{B}	channels	Γ / GeV	\mathcal{B}
$\Xi_{b c}^{+} \rightarrow \Lambda_{b}^{0} \pi^{+}$	5.74×10^{-15}	2.13×10^{-3}	$\Xi_{b c}^{+} \rightarrow \Lambda_{b}^{0} \rho^{+}$	1.55×10^{-14}	5.77×10^{-3}
$\Xi_{b c}^{+} \rightarrow \Lambda_{b}^{0} a_{1}^{+}$	5.85×10^{-15}	2.17×10^{-3}	$\Xi_{b c}^{+} \rightarrow \Lambda_{b}^{0} K^{+}$	5.21×10^{-16}	1.93×10^{-4}
$\Xi_{b c}^{+} \rightarrow \Lambda_{b}^{0} K^{*+}$	7.32×10^{-16}	2.71×10^{-4}			
$\Xi_{b c}^{+} \rightarrow \Sigma_{b}^{0} \pi^{+}$	3.08×10^{-15}	1.14×10^{-3}	$\Xi_{b c}^{+} \rightarrow \Sigma_{b}^{0} \rho^{+}$	1.30×10^{-14}	4.81×10^{-3}
$\Xi_{b c}^{+} \rightarrow \Sigma_{b}^{0} K^{*+}$	6.50×10^{-16}	2.41×10^{-4}	$\Xi_{b c}^{+} \rightarrow \Sigma_{b}^{0} K^{+}$	2.32×10^{-16}	8.62×10^{-5}
$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{0} \pi^{+}$	9.42×10^{-14}	3.49×10^{-2}	$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{0} \rho^{+}$	1.91×10^{-13}	7.09×10^{-2}
$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{0} K^{*+}$	7.55×10^{-15}	2.80×10^{-3}	$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{0} K^{+}$	8.16×10^{-15}	3.03×10^{-3}
$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{0} \pi^{+}$	5.47×10^{-14}	2.03×10^{-2}	$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{\prime 0} \rho^{+}$	2.01×10^{-13}	7.44×10^{-2}
$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{00} K^{*+}$	8.53×10^{-15}	3.16×10^{-3}	$\Xi_{b c}^{+} \rightarrow \Xi_{b}^{\prime 0} K^{+}$	3.82×10^{-15}	1.42×10^{-3}

- First experimental attempt

$$
\begin{array}{r}
\frac{\sigma\left(\Xi_{b c}^{0}\right)}{\sigma\left(\Lambda_{b}^{0}\right)} \frac{B\left(\Xi_{b c}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)}<[0.5,2.5] \times 10^{-4} \\
\frac{\sigma\left(\Xi_{b c}^{0}\right)}{\sigma\left(\Lambda_{b}^{0}\right)} \frac{B\left(\Xi_{b c}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\right)}{B\left(\Lambda_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\right)}<[1.4,6.9] \times 10^{-3} \\
{[\text { LHCb, 2104.04759] }}
\end{array}
$$

A novel approach - - inclusive $\Xi_{b c}$ search

- Generally, inclusive decays have (1) larger branching ratios but
(2) lower detection efficiencies

See Prof. Xiaolong Wang's talk
Basically impossible at hadron colliders

- However, for $\Xi_{b c} \rightarrow \Xi_{c c}+X$, the efficiency can be large by making use of the inform of displaced vertex, because $\Xi_{b c}$ can only decay weakly

Inspired by the proposal to search for $\Xi_{b b}$ via $\Xi_{b b} \rightarrow B_{c}+X$
[Gershon,Poluektov,1810.06657]

- $\Xi_{b c}$ is (almost) the only source for displaced $\Xi_{c c}$'s
- The $B_{c} \rightarrow \Xi_{c c}+X$ decay is highly suppressed

Calculation of $\Xi_{b c} \rightarrow \Xi_{c c}+X$

- First important fact: $\Xi_{b c} \rightarrow \Xi_{c c}+X=\Xi_{b c} \rightarrow X_{c c}$
$X_{c c}$ include excited states of $\Xi_{c c}$, which still decay into $\Xi_{c c}$
- If we regard the heavy diquarks $\chi_{b c}$ and $\chi_{c c}$ as elementary objects, the decay at the quark-diquark diquark level is

$$
\chi_{b c} \rightarrow \chi_{c c}+\ell^{-} \bar{\nu}, \chi_{c c}+\bar{q} q^{\prime}
$$

It is reasonable because $r_{Q Q^{\prime}} \sim 1 /\left(m_{Q^{\prime}} v\right) \ll 1 / \Lambda_{Q C D}$ [e.g.,Brodsky,Guo,Hanhart,Meissner,1101.1983]

- By making use of OPE, the inclusive decay width can be expanded by powers of $1 / M_{Q Q^{\prime}}$ within the Heavy Diquark Effective Theory
- At the leading power

$$
B\left(\Xi_{b c} \rightarrow X_{c c}\right)=B\left(\chi_{b c} \rightarrow \chi_{c c}+\ell^{-} \bar{\nu}, \chi_{c c}+\bar{q} q^{\prime}\right)+\mathcal{O}\left(1 / M_{Q Q^{\prime}}\right)
$$

Calculation of $\Xi_{b c} \rightarrow \Xi_{c c}+X$

- The key issue is the 2-diquark-2-fermion interaction vertex, i.e. the $\chi_{b c} \rightarrow \chi_{c c}$ diquark current

- If we consider the heavy quark mass effects, the structure is more complicated, and $\mathscr{J}(\ldots)$ is given by the right curve
- The model matching is to be improved

Calculation of $\Xi_{b c} \rightarrow \Xi_{c c}+X$ (Preliminary)

- Numerical result for the decay width

$$
\Gamma\left(\Xi_{b c} \rightarrow \Xi_{c c}+X\right)=(3.9 \pm 0.1 \pm 1.0 \pm 1.2) \times 10^{-13} \mathrm{GeV}
$$

Uncertainties from Quark mass, model independence, power correction

- The branching ratio is

$$
B\left(\Xi_{b c} \rightarrow \Xi_{c c}+X\right) \approx 12 \% \times \frac{\tau_{\Xi_{b c}}}{200 \mathrm{fs}}
$$

- $\Xi_{c c}^{++}$fragmentation suffers a factor of $1 / 2$ (Assuming the u and d quark saturate the fragmentation)

$$
B\left(\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X\right)=6 \% \times \frac{1}{2}\left(\frac{\tau_{\Xi_{b c}^{+}}}{200 \mathrm{fs}}+\frac{\tau_{\Xi_{b c}^{0}}}{200 \mathrm{fs}}\right)=6 \% \times\left(\frac{\tau_{\Xi_{b c}^{+}}+\tau_{\Xi_{b c}^{0}}}{400 \mathrm{fs}}\right)
$$

- Lifetime [H.Y.Cheng, F.R.Xu, 1903.08148]

$$
93 \mathrm{fs}<\tau\left(\Xi_{b c}^{0}\right)<108 \mathrm{fs}, 409 \mathrm{fs}<\tau\left({\left.\underset{12}{ }{ }^{+}\right)<607 \mathrm{fs} .}^{+}\right)
$$

Search for $\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X$ with displaced $\Xi_{c c}^{++}$

- Estimated of signal signal events

$$
\begin{aligned}
& \qquad N\left(\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X\right)=N\left(\Xi_{c c}^{++}\right) \cdot \frac{2 \sigma\left(\Xi_{b c}\right)}{\sigma\left(\Xi_{c c}\right)} \cdot B\left(\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X\right) \\
& \text { (Both } \Xi_{b c}^{0} \text { and } \Xi_{b c}^{+} \text {decay equally to } \Xi_{c c}^{++} \text {and thus Identical detection efficiency) }
\end{aligned}
$$

Three ingredients:

1. Number of signals of $\Xi_{c c}^{++}$
2. Production ratio $\sigma\left(\Xi_{b c}\right) / \sigma\left(\Xi_{c c}\right)$
3. Branching fraction of inclusive decay of $\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X$

Search for $\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X$ with displaced $\Xi_{c c}^{++}$

1. Number of signals of $\Xi_{c c}^{++}$

J.B.He

- Data of $9 \mathrm{fb}^{-1}$ Run $1+2$

	2011	2012	2018	2023	2029	2035
LHCb	Run I		Run II	Run III	Run IV	Run V
Integrated luminosity	$1 \mathrm{fb}^{-1}$	$3 \mathrm{fb}^{-1}$	$9 \mathrm{fb}^{-1}$	$23 \mathrm{fb}^{-1}$	$50 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$

- Events estimated for $23 \mathrm{fb}^{-1}$ (Run III)

	LHCb			Belle II
Decay mode	$23 \mathrm{fb}^{-1}$	$50 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$	$50 \mathrm{ab}^{-1}$
$\Xi_{c c}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$	7 k	15 k	90 k	$<6 \mathrm{k}$
$\Xi_{b c}^{+} \rightarrow J / \psi \Xi_{c}^{+}$	50	100	600	-

Search for $\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X$ with displaced $\Xi_{c c}^{++}$

2. Production ratio $\sigma\left(\Xi_{b c}\right) / \sigma\left(\Xi_{c c}\right)$
[X.G.Wu et al, 1101.1130]
TABLE VI. Comparison of the total cross section (in units nb) for the hadronic production of $\Xi_{c c}, \Xi_{b c}$, and $\Xi_{b b}$ at $\sqrt{S}=7.0 \mathrm{TeV}$ and $\sqrt{S}=14.0 \mathrm{TeV}$, where $\left[{ }^{3} S_{1}\right]$ and $\left[{ }^{1} S_{0}\right]$ stand for the combined results for the diquark in spin-triplet and spin-singlet states, respectively. In the calculations, we adopt $p_{T}>4 \mathrm{GeV}$ and $|y|<1.5$.

	$\Xi_{c c}$							$\Xi_{b c}$		$\Xi_{b b}$	
	$\sqrt{S}=7.0 \mathrm{TeV}$	$\sqrt{S}=14.0 \mathrm{TeV}$	$\sqrt{S}=7.0 \mathrm{TeV}$	$\sqrt{S}=14.0 \mathrm{TeV}$	$\sqrt{S}=7.0 \mathrm{TeV}$	$\sqrt{S}=14.0 \mathrm{TeV}$					
$\left.{ }^{3} S_{1}\right]$	38.11	69.40	16.7	28.55	0.503	1.137					
$\left.{ }^{1} S_{0}\right]$	9.362	17.05	3.72	6.315	0.100	0.226					
Total	47.47	86.45	20.42	34.87	0.603	1.363					

$$
\sigma\left(\Xi_{b c}\right) / \sigma\left(\Xi_{c c}\right) \approx 40 \%
$$

Search for $\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X$ with displaced $\Xi_{c c}^{++} \quad$ (Preliminary)

- Final number of estimated signal events @ LHCb Run3

$$
\begin{aligned}
N\left(\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X\right) & =N\left(\Xi_{c c}^{++}\right) \cdot \frac{2 \sigma\left(\Xi_{b c}\right)}{\sigma\left(\Xi_{c c}\right)} \cdot B\left(\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X\right) \\
& =10^{4} \cdot \frac{N\left(\Xi_{c c}^{++}\right)}{10^{4}} \times 40 \% \cdot \frac{2 \sigma\left(\Xi_{b c}\right) / \sigma\left(\Xi_{c c}\right)}{40 \%} \times 6 \% \cdot\left(\frac{\tau_{\Xi_{b c}^{+}}+\tau_{\Xi_{b c}^{0}}}{400 \mathrm{fs}}\right) \\
& =\mathbf{4 8 0} \times \frac{N\left(\Xi_{c c}^{++}\right)}{10^{4}} \cdot \frac{\sigma\left(\Xi_{b c}\right) / \sigma\left(\Xi_{c c}\right)}{40 \%} \cdot\left(\frac{\tau_{\Xi_{b c}^{+}}+\tau_{\Xi_{b c}^{0}}}{400 \mathrm{fs}}\right)
\end{aligned}
$$

Small possibility from B_{c} decays

- The small phase space (0.18 GeV for $\Xi_{c c} \Xi_{c}$) only allows the processes of
$B_{c} \rightarrow \Xi_{c c} \Xi_{c}$, or $\Xi_{c c} \Xi_{c} \pi$, or $\Xi_{c c}^{*} \Xi_{c}$, or $\Xi_{c c} \Xi_{c}^{*}$
- Similar process but with a light spectator quark:

$$
\begin{aligned}
& \operatorname{Br}\left(B^{0} \rightarrow \Xi_{c}^{-} \Lambda_{c}^{+}\right)=(1.2 \pm 0.8) \times 10^{-3} \\
& \operatorname{Br}\left(B^{-} \rightarrow \Xi_{c}^{0} \Lambda_{c}^{-}\right)=(0.95 \pm 0.23) \times 10^{-3}
\end{aligned}
$$

Conclusion

- We propose to search for $\Xi_{b c}$ via inclusive $\Xi_{b c} \rightarrow \Xi_{c c}^{++}+X$ with a displaced $\Xi_{c c}^{++}$.
- We calculate $\Gamma\left(\Xi_{b c} \rightarrow \Xi_{c c}+X\right)=(3.9 \pm 0.1 \pm 1.0 \pm 1.2) \times 10^{-13} \mathrm{GeV}$.
- We estimate about 480 signal events to be observed @ LHC Run 3.
- We hope it is useful.

