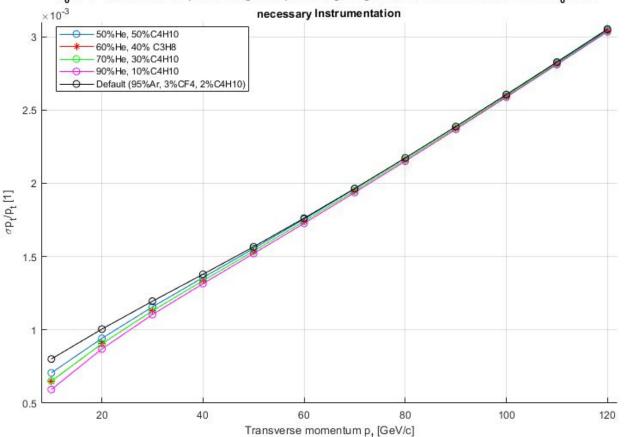
LDT simulation results

<u>Lizi Hutchinson</u>¹ - Harald Fox¹ ¹Lancaster University Question: How do the different gas mixtures affect the pT resolution?

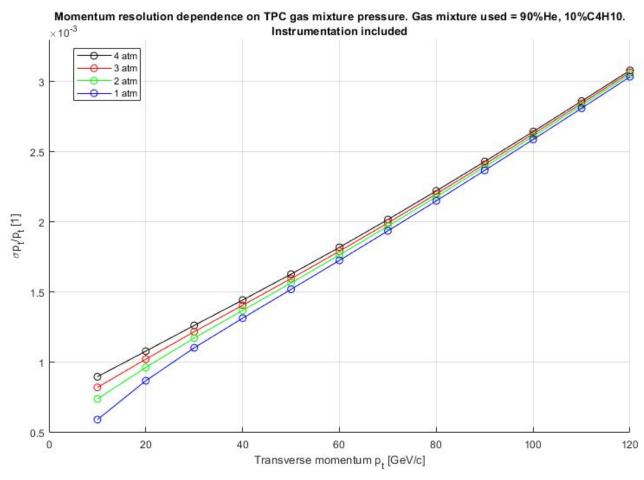

Answer: When using a quenching gas of C4H10, a higher % of Helium is preferable for better momentum resolution. However, using 60%He and 40%C3H8 is directly comparable to 70%He and 30%C3H8. This is because C3H8 has a larger X0 than C3H8.

Notes:

- Basic simulation in LDT
- Only TPC X0 was changed in the simulation, but X0 due to wires/instrumentation was modelled.
- Very basic average method was used to simulate the X0 of the gas mixture. This needs to be confirmed by an expert.
- Effects of gas mixture on σ₀, σ₁, C_{diff}(Rφ, z) and efficiency are not modelled here.
- Shows a vaguely proportional model between X0 and momentum resolution, so gas mixtures with low X0 are preferable.

P = 1 atm

Momentum resolutuion for varying gas mixtures in the TPC, all other geometry is the same as default (Jan2021) X_o of TPC has been computed using a simple average of gas mixture, and also includes the X_o of the

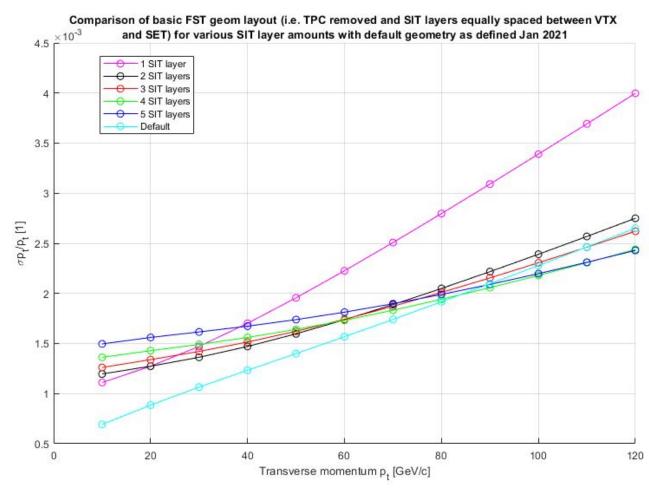


Question: How does the TPC gas mixture pressure affect the pT resolution?

Answer: Using the ideal gas law, we assume that if pressure is increased by a factor of x, the density does also. Thus, X0 decreases by 1/x, and the thickness in the .bgeom files increases by x (since we take the reciprocal).

Notes:

- Shows a proportional model between pressure and momentum resolution.
 Therefore lower pressure is preferable.
- This effect is larger with gas mixtures that have a larger X0, for example, the default setting of 95%Ar would see a larger increase at higher pressures.
- This effect is also larger at lower momenta.

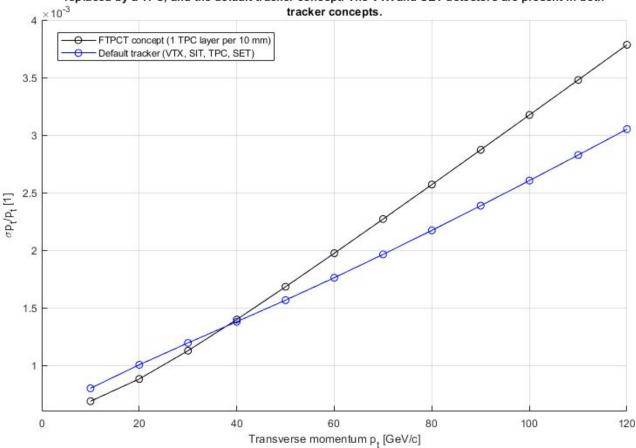


Question: If we remove the TPC completely (i.e. FST concept), how many silicon layers do we need to have a comparable momentum resolution?

Answer: We will struggle to have a comparable resolution. Tracker with TPC is better than all without, up to ~85GeV, at which point 4 tracker layers becomes preferable.

Notes:

- Basic simulation in LDT
- TPC was completely removed but VTX and SET were retained.
- SIT layers were distributed evenly throughout.


Question: For completion, if we remove the inner tracker layers and expand the TPC to fill the space, what happens to our momentum resolution.

Answer: Default tracker (i.e. with SIT) is better than a TPC-only tracker, except at lower momenta (<~38 GeV)

Notes:

- Basic simulation in LDT
- All SIT layers were removed, but VTX and SET were retained.
- TPC layers were added in the space where the SIT layers were at a density of 1 TPC layer per 10mm, which was the same as was already present (150 layers in 1500 mm)

Comparison of the FTPCT (Full TPC Tracker) concept, where all SIT layers have been removed and replaced by a TPC, and the default tracker concept. The VTX and SET detectors are present in both

