A global analysis of Higgs branching fraction measurement

Gang Li

CEPC Detector plenary, March 17, 2021

Outline

- Introduction
- Methods
- Some preliminary results
- Summary and plan

Introduction

A global analysis approach, talk at PKU workshop, 2019

- CEPC Higgs Br measurement
 - 9 Higgs decays accessible at CEPC
 - Typical S/N ratio ~ 1/O(1)
 - Brs very small ($\mu\mu, \gamma\gamma, \gamma Z$) or large (bb,WW)
 - Contaminations among them is an issue
 - cc/bb/gg/WW/ZZ/ $\tau\tau$ hadronic FS

Decay mode	$\sigma(ZH) \times BR$	BR
$H \rightarrow b \bar{b}$	0.27%	0.56%
$H \to c \bar{c}$	3.3%	3.3%
$H \to gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to Z Z^*$	5.1%	5.1%
$H\to\gamma\gamma$	6.8%	6.9%
$H\to Z\gamma$	15%	15%
$H \to \tau^+ \tau^-$	0.8%	1.0%
$H \to \mu^+ \mu^-$	17%	17%
$H \to \mathrm{inv}$	—	< 0.30%

Global analysis approach and advantages of • Absolute/model-independent e+e-collider

- Two types of backgrounds
 - Higgs bkgd (crosstalk, characterized by a confusion matrix)
 - non-Higgs bkgd (enlarge the stat. unc. of n_i)
- Measuring all Br's simultaneously
 - Global confusion has more information
 - Multinomial distribution: smaller stat. uncertainty
 - Global constraint: improve precision

CEPC S
 S + B Fi
 H→bb

 $N \times p \times (1 - p)$ for multinomial

 $V \times p$ for Poisson

non-Higgs background

- subtracted with fitting for other method
- worsen σ_{n_i} 's

Take the simplest case as an example -2 decays only

Efficiency matrix From MC, no dependence on Br's

A produced final state reconstructed as final state

Measurement: Solve N and minimize its uncertainty Demodulation

$N \rightarrow B$: error propagation shows very simple features

N⁴: statistical power

- |E|²: the performance of Detector x
 Reconstruction x Analysis
- 2 Br's have same uncertainties

 Σ_{B} : Variance of Branching fractions

Same for more than 2 decays

$$\Sigma_{B} = \underbrace{\frac{1}{N^{4} |E|^{2}}}_{\cdots} \left(\begin{cases} \sum_{j} [N_{1} \frac{\partial N}{\partial n_{j}} - N \frac{\partial N_{1}}{\partial n_{j}}] \overrightarrow{\sigma_{n_{j}}} \end{cases}^{2} \cdots \\ \left(\sum_{j} [N_{2} \frac{\partial N}{\partial n_{j}} - N \frac{\partial N_{2}}{\partial n_{j}}] \overrightarrow{\sigma_{n_{j}}} \right)^{2} \cdots \\ \left(\sum_{j} [N_{3} \frac{\partial N}{\partial n_{j}} - N \frac{\partial N_{3}}{\partial n_{j}}] \overrightarrow{\sigma_{n_{j}}} \right)^{2} \end{cases}$$

Binomial to multinomial distribution

☑N⁴ : statistical power

Image: E|2 : the performance of Detector x Reconstruction x Analysis

From the point view of detector design and optimization, a parameterization of performance as simple as possible is desired

The determinant of efficiency matrix |E| is a good candidate

$$P = f(\sigma_p, \sigma_{E_\gamma}, PID, JID, JER, \ldots) \ = |E|^2 \propto rac{1}{|\Sigma_B|^2}$$

Now problem successfully becomes how to Maximize |E|

Methods to get efficiency matrix

On backgrounds

- Two type of backgrounds
- Non-uuH backgrounds: subtracted by fitting, enlarging statistical uncertainty of n_i
- uuH backgrounds (cross talks): the efficiency matrix dealing with them

Solve B or N by minimizing the χ^2

$$\chi^2 = \sum_i rac{(\sum \epsilon_{ij} N_j - n_i)^2}{\sigma_{n_i}^2} + rac{(\sum_l N_l - N)^2}{\sigma_N^2}$$

Higgs -> cc, bb, mm, $\tau\tau$ gg, $\gamma\gamma$, ZZ, WW, γ Z

1 2 3 4 5 6 7 8 9

$\left(\begin{array}{c}n_1\end{array}\right)$		ϵ_{11}	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19})	$\begin{pmatrix} N_1 \\ N \end{pmatrix}$
n_2		ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}	N_2
n_3		ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}	N_3
n_4		ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}	N_4
n_5	=	ϵ_{51}	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}	N_5
n_6		ϵ_{61}	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{65}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}	N_6
n_7		ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}	N_7
n_8		ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}	N_8
$\langle n_9 \rangle$		$\left(\epsilon_{91} \right)$	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99} /	$\langle N_9 \rangle$

 $\sum N_i = N^{tag}$ or $\sum B_i = 1$

Now we focus on the efficiency matrix

Traditionally only one row can be obtained for a individual analysis

/									```
(ϵ_{11}	ϵ_{12}	ϵ_{13}	ϵ_{14}	ϵ_{15}	ϵ_{16}	ϵ_{17}	ϵ_{18}	ϵ_{19}
	ϵ_{21}	ϵ_{22}	ϵ_{23}	ϵ_{24}	ϵ_{25}	ϵ_{26}	ϵ_{27}	ϵ_{28}	ϵ_{29}
	ϵ_{31}	ϵ_{32}	ϵ_{23}	ϵ_{34}	ϵ_{35}	ϵ_{36}	ϵ_{37}	ϵ_{38}	ϵ_{39}
	ϵ_{41}	ϵ_{42}	ϵ_{33}	ϵ_{44}	ϵ_{45}	ϵ_{46}	ϵ_{47}	ϵ_{48}	ϵ_{49}
	ϵ_{51}	ϵ_{52}	ϵ_{43}	ϵ_{54}	ϵ_{55}	ϵ_{56}	ϵ_{57}	ϵ_{58}	ϵ_{59}
	ϵ_{61}	ϵ_{62}	ϵ_{53}	ϵ_{64}	ϵ_{65}	ϵ_{66}	ϵ_{67}	ϵ_{68}	ϵ_{69}
	ϵ_{71}	ϵ_{72}	ϵ_{63}	ϵ_{74}	ϵ_{75}	ϵ_{76}	ϵ_{77}	ϵ_{78}	ϵ_{79}
	ϵ_{81}	ϵ_{82}	ϵ_{73}	ϵ_{84}	ϵ_{85}	ϵ_{86}	ϵ_{87}	ϵ_{88}	ϵ_{89}
ſ	ϵ_{91}	ϵ_{92}	ϵ_{83}	ϵ_{94}	ϵ_{95}	ϵ_{96}	ϵ_{97}	ϵ_{98}	ϵ_{99}
-									

Now we will try some sophisticated machine learning

- EFN (energy flow network) and
- DGNN(dynamic graph convolution neural network)

EFN approach (deep sets)

Deep sets for particle (jet): JHEP01(2019)121

It was proposed to identify jets at LHC

ALL particle level information as input: 4-momenta, impact parameters, and PID

No jet-clustering, no isolation of leptons and photons

No requirement on input size such as DNN

No explicitly dependence on the ordering of the inputs such as RNN

Respect the permutation symmetry

Able to handle variable-length inputs

Infra-red and collinear safety naturally achieved

The key mathematical fact: A generic function of a set of objects can be decomposed to arbitrarily good approximation in a practical and intuitive way [arXiv:1703.06114]

Some preliminary results

Termnologies

- Tagging efficiency: accuracy in ML
- ROC : Receiver Operating Characteristics Curve, mainly for binary classification,
 - In HEP it is Rejection rate vs. Tagging efficiency (FN rate vs. TP rate)
- AUC : Area under the ROC
- Confusion matrix
 - it is the efficiency matrix when neglecting SM backgrounds

		Actual Classes				
		POSITIVE	NEGATIVE			
I Classes	POSITIVE	TRUE POSITIVE (TP)	FALSE POSITIVE (FP)			
Predicted	NEGATIVE	FALSE NEGATIVE (FN)	TRUE NEGATIVE (TN)			

Samples: $e^+e^- \rightarrow ZH, Z \rightarrow \mu^+\mu^-, e^+e^-$

- 100 k events for each of 9 Higgs decay modes:
 cc, bb, μμ, ττ, gg, γγ, ZZ, WW, γZ
- Train: validation: test = 8:1:1
- Fast simulation
 - momenta of charged tracks and energies of neutral particle smeared according to the performance in CDR
 - Impact parameters of charged track using ideal resolution
- No SM backgrounds taken into account

DGCNN on same samples achieves similar performance

Discussion on the results

- $\mu\mu$, $\tau\tau$, and $\gamma\gamma$ best performance
 - Bonus: $\tau\tau$ as good as $\mu\mu$
- ZZ not as good as others as expected
- Confusion among di-jets, WW, and ZZ
 - gg fakes cc since gluon more likely splits into cc than bb
 - gg also fakes WW, ZZ hadronic decays
- γZ rather good

EFN for flavor tagging

- Input: 300 k Z—> bb, cc, and other jets events
- Same fast simulation configuration
- Using fastjet/ee-kt algorithm to force all particles to 2 jets
- Train: validation: test = 8:1:1

Single jet tagging

Averaged accuracy is 89%, CDR: 80%

In the worst case of c-tagging rejection power still > 90% for 80% efficiency

CDR referene

Receiver Operating Characteristic Curve (ROC)

80% b-tagging eff. : Reject 90% c and 99% o jets

80% c-tagging eff. : Reject 75% b and 75% o jets

Jet pair tagging

Averaged accuracy is 97%, good news for Rb & Rc measurement

Back to the efficiency matrix

- No dependence on the branching fractions of Higgs decays in MC
- Make use of full confusion matrix information
- one single parameter, det |E|, quantifies the detector performance

Single purpose optimization instead of a bunch of benchmarks Useful for detector optimization

$$\Sigma_B \propto rac{1}{|E|^2}$$

Summary and plan

Summary

- Global analysis of Higgs Br's could improve the precision simultaneously
- Global analysis of the all 9 decays can serve as a metric for optimization: advantage of one single parameter
- ✓ Byproducts: same ML approach improves jet-tagging performance

O Plan

- More validations for the procedure
- ✓ Use GCNN algorithm to cross check EFN
- Add more decay modes, such as invisible decay,
- Take the main backgrounds into account
- ✓ Quantify the impacts of key detector performances on |E|, such as P, E, impact parameters, ...
- Setup a framework based ML for fast iteration of detector optimization
- Move to full simulation in CEPCSW for detector optimization

The end Thanks a lot

Common collider observables decomposed into per-particle maps Φ and functions F

Observable \mathcal{O}		$\mathbf{Map}\Phi$	Function F
Mass	m	p^{μ}	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Multiplicity	M	1	F(x) = x
Track Mass	m_{track}	$p^{\mu}\mathbb{I}_{ ext{track}}$	$F(x^{\mu}) = \sqrt{x^{\mu}x_{\mu}}$
Track Multiplicity	M_{track}	$\mathbb{I}_{ ext{track}}$	F(x) = x
Jet Charge [72]	\mathcal{Q}_{κ}	$(p_T, Q p_T^\kappa)$	$F(x,y) = y/x^{\kappa}$
Eventropy [74]	$z\ln z$	$(p_T, p_T \ln p_T)$	$F(x,y) = y/x - \ln x$
Momentum Dispersion [93]	p_T^D	(p_T, p_T^2)	$F(x,y) = \sqrt{y/x^2}$
C parameter [94]	C	$(ert ec p ert, ec p \otimes ec p / ec p ec))$	$F(x,Y) = \frac{3}{2x^2} [(\operatorname{Tr} Y)^2 - \operatorname{Tr} Y^2]$

Detector design & Optimization

Multi-purpose optimization: a bunch of benchmarks — A single parameter is favored, single-purpose optimization