Progress on CEPC MDI Background Study

Haoyu SHI

On Behalf of CEPC MDI Work Group

CEPC Physics and Detector Plenary Meeting, 2021.3.17

Radiation Backgrounds

Higgs Mode								
Background	Beam Lifetime	Marker						
Beam Gas Bremsstrahlung	63.8 h	CO, 10 ⁻⁷ Pa						
Beam Thermal Photon	50.7 h							
Radiative bhabha	74 min							
Beamstrahlung	80 min							

- Photon BG and Beam Loss BG were simulated using different tools. Injection BG is ignored for now.
 - Cross-check and benchmark needed.
- Other BGs are planned to study.

Background	Generation	Tracking	Detector Simu.		
Synchrotron Radiation	BDSim	BDSim/Geant4			
Beamstrahlung/Pair Production	Guinea-Pig++	Guinea-Pig++			
Beam-Thermal Photon	PyBTH		Mokka		
Beam-Gas Bremsstrahlung	PyBGB	SAD			
Radiative Bhabha	Bbbrem/PyRBB				

Starting with Synchrotron Radiation

• Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region

Revised beam pipe design to achieve No direct SR photons hitting the central beam pipe except the extreme beam conditions (e.g. beam off orbit due to magnet errors)

S. Bai

Asymmetry design

- ~ 37500 photons would hit Be beampipe per bunch
 - Consistent with CDR results
- Most photons hitting Be pipe were generated at ~-70m.
 - Photons should hit the slope at ~-1.11m to -0.855m, and then scattered to Be pipe.
- Masks are needed.
 - We have tried different positions, but it seems hard to decrease the Be hitting numbers.
 - We need to know the source of the photon.

Mitigation – SR Mask

Power

&W

1.47 w

Power

&Z(CDR)

5.13w

•	Lots of photons are secondaries,
	generated within QD0

- New mask design:
 - Tungsten
 - 4mm height
 - 10mm long
 - Locates at -1.21m
- ~300 photons/bunch could hit Be beampipe, with a.e. ~100keV

Loss

factor(V/pc)

8.69*10-4

Power

& Higgs

0.36 w

Power &Z(High

Lum)

22.61w

Nearly 20 versions tried in last 10 months

Revised beampipe design

Pair Production

• Detector Impact on 1st layer of vertex detector, with a safety factor of 10

Mode	Hit Density($cm^{-2} \cdot BX^{-1}$)	$TID(krad \cdot yr^{-1})$	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$			
Higgs	1.81	499.476	9.68×10^{11}			
W?	1.233	4201.818	7.70×10^{12}			
Z(2T)?	0.015	225.060	4.18×10^{11}			

OLI OT HYDROG & DOLOGIOL FROM HY MOULTING, 11. 0111, 2021.0.1

Radiative Bhabha scattering

- Lots of loss particles are "outside" of the beampipe.
 - Due to the tracking mechanism of SAD
- The improvement of the tracking method is needed.

Tracking Method Improvement

Method 1 – Out

Method 2 – Cut

Method 3 – Before

Method 4 – Move

	Method 1 - Out	Method 2 - Cut	Method 3 – Before	Method 4 – Move
Hit Density($cm^{-2} \cdot BX^{-1}$)	0.155	0.004	0.02	0.0066
$TID(krad \cdot yr^{-1})$	244.603	2.072	20.3	6.04
1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$	6.62×10 ¹¹	4.03×10 ⁹	3.97×10 ¹⁰	1.12×10 ¹⁰

Beam Gas Bremsstrahlung

- Updated tracking method applied
- Due to tracking method updating, the results decreased from CDR.

Lost distribution

- Downstream lost is higher with collimators.
- The lost within downstream QD0 is significant.
 - Mitigation and shielding are needed.

Beam Lost Particle Distribution -- With Collimator

LCWS 2021, H. SHI

4

Detector Impact

• Preliminary results on 1st layer of vertex. Safety factor applied.

Background	Hit Density(a	$m^{-2} \cdot BX^{-1}$)	TID(kra	$d \cdot yr^{-1}$)	1 MeV equivalent neutron fluence $(n_{eq} \cdot cm^{-2} \cdot yr^{-1})$			
	Higgs	Z	Higgs	Z	Higgs	Z		
Pair production	1.81	0.015	499.476	225.060	9.68×10 ¹¹	4.18×10^{11}		
Synchrotron Radiation	0.026		15.65					
Radiative Bhabha	0.02		20.3		3.97×10^{10}			
Beam Gas	0.359	2.89×10 ⁻³	363.614	181.97	9.84×10^{11}	4.99×10 ¹¹		
Beam Thermal Photon	0.02		22.31		6.20×10 ¹⁰			
Total	2.235		921.35		2.537×10^{12}			

Summary & Outlook

- The finalization of the central beam pipe design has been determined.
 - All background simulation is updating using revised final design.
- Mask was chosen as the shielding of SR.
 - Be hitting number decrease from ~40000 to ~300 per bunch
- Tracking method of beam loss backgrounds has been updated.
- Simulation is performing for all three modes with CDR design and parameters.
 - Higgs mode has been almost finished. W and Z is under simulation.
- We plan to move to high luminosity case in coming months.

Backup

HOM analysis for asymmetry

- Maximum HOM Heat load at High-Lumi Z
 - 415.6(Be) + 1386.3(Al) + 855.85 (Cu) W

Y. Liu

距IP 距离(m m)	形状	内径(mm)	材料	内表面积 (mm ²)	备注	总功率8 目1ggs (W)	功率密度& Higgs (W/cn ²)	功率分布& Higgs (W)	总功率& Z (W)	功率密度& 2 (W/cm ²)	功率分布8 2 (₩)	总功率a 出 Z (W)	功率密度& 里 Z (W/cm ²)	功率分布8 里 2 (₩)
0 - 120	國直管	直径28	Be	10556		6.6	0.06	6.60	47.92	0.45	47.92	415.6	3.94	415.60
120-205	國直管	直径28	Al	7477				2.71			39.44			169.36
205-655	國锥管	直径28过 渡到直径 40	AI	48071	taper:1.7 5	22.2	0.04	17.44	322.8	0.53	253. 54	1386.3	2. 27	1088.85
655-700	國直管	直径40	Al	5655				2.05			29.83			128.09
700-780	國直管	直径40	Cu	10052	远程连接 装置预留			2.60			39.05			168.64
780-805	圆面过 渡到跑 道型	水平方向 直径40- 40, 垂直 方向直径 40-30.7	Cu	3124		13.2	0. 03	0. 81	198.2	0.39	12. 14	855.85	1.68	52. 41
805-855	跑道型 过渡到 两个圆 面	上游直径 12 下游直径 20	Cu	6932				1. 79			26.93			116. 30
855-1110	上游圆 锥管 下游圆 直管	上游直径 12过渡到 20,下游 直径20	Cu	30906				8. 00			120. 08			518. 50