Design of the non-uniform magnetic Field in CEPCSW

Tao Lin

May 2021

B-field in DD4hep

DD4hep provides a solution on the management of B-fields.

```
<fields>
  <field name="InnerSolenoid" type="solenoid"</pre>
         inner_field="Field_nominal_value"
         outer_field="0"
         zmax="SolenoidCoil_half_length"
         inner_radius="SolenoidCoil_center_radius"
         outer_radius="Solenoid_outer_radius">
  </field>
  <field name="OuterSolenoid" type="solenoid"
         inner field="0"
         outer_field="Field_outer_nominal_value"
         zmax="SolenoidCoil_half_length"
         inner radius="Solenoid outer radius"
         outer_radius="Yoke_barrel_inner_radius">
  </field>
</fields>
```

Define the field type and properties in XML file


```
static Ref_t create_SolenoidField(Detector& description, xml_h e) {
  bool has_inner_radius = c.hasAttr(_U(inner_radius));
  bool has outer radius = c.hasAttr( U(outer radius)):
  if (!has_inner_radius && !has_outer_radius) {
    throw_print("Compact2Objects[ERROR]: For a solenoidal field at least one of the "
                " xml attributes inner_radius of outer_radius MUST be set.");
  CartesianField obj:
  SolenoidField* ptr = new SolenoidField();
  // This logic is a bit weird, but has it's origin in the compact syntax:
  // If no "inner_radius" is given, the "outer_radius" IS the "inner_radius"
  // and the "outer_radius" is given by one side of the world volume's box
  if (has_inner_radius && has_outer_radius) {
    ptr->innerRadius = c.attr<double>(_U(inner_radius));
    ptr->outerRadius = c.attr<double>( U(outer radius));
  else if (has_inner_radius) {
    Box box = description.worldVolume().solid();
   ptr->innerRadius = c.attr<double>(_U(inner_radius));
   ptr->outerRadius = box.x();
  else if (has_outer_radius) {
    Box box = description.worldVolume().solid();
   ptr->innerRadius = c.attr<double>(_U(outer_radius));
    ptr->outerRadius = box.x();
  if (c.hasAttr(_U(inner_field)))
    ptr->innerField = c.attr<double>(_U(inner_field));
  if (c.hasAttr(_U(outer_field)))
    ptr->outerField = c.attr<double>(_U(outer_field));
  if (c.hasAttr(_U(zmax)))
   ptr->maxZ = c.attr<double>(_U(zmax));
   ptr->maxZ = description.constant<double>("world_side");
  if (c.hasAttr(_U(zmin)))
   ptr->minZ = c.attr<double>(_U(zmin));
    ptr->minZ = -ptr->maxZ;
  obj.assign(ptr, c.nameStr(), c.typeStr());
  return obj;
DECLARE_XMLELEMENT(SolenoidMagnet,create_SolenoidField)
 / This is the plugin required for slic: note the different name
DECLARE_XMLELEMENT(solenoid,create_SolenoidField)
```

Parse the XML file and create Field Object,

Handling non-uniform B-Field in Icgeo

- In the lcgeo project, there is an example to read the non-uniform B-Field from ROOT file.
 - https://github.com/iLCSoft/lcgeo/blob/master/detector/ other/FieldMapBrBz.cpp
 - Use bilinear interpolation to calculate the field at the given position
- The examples of field maps can be found in
 - https://github.com/iLCSoft/lcgeo/tree/master/fieldmaps

bilinear interpolation

Software design in CEPCSW

