

F. lemmi

Trigger studes (fifth part)

Fabio lemmi 1 Huiling Hua 1 Hongbo Liao 1 Hideki Okawa 2 Yu Zhang 2

 $^1 \mbox{Institute}$ of High Energy Physics (IHEP), Beijing $$^2 \mbox{Fudan}$$ University, Shanghai

March 31, 2021

F. lemmi (IHEP) Trigger efficiency 1 / 14

Trigger efficiency studies

Trigger efficiency

- Goal: compute trigger efficiency as a function of H_T
- Compare results for data and MC, extract trigger SF if needed
- Trigger efficiency definition:

$$arepsilon(\mathcal{H}_{\mathcal{T}}) = rac{ ext{N}_{ ext{trig+presel}}}{ ext{N}_{ ext{presel}}}(\mathcal{H}_{\mathcal{T}})$$

- N.B.: in data, we never have all the events that pass the offline preselection
- In data, events are always collected with a trigger
 - In other words, denominator meaningless for data

Trigger efficiency studies

Trigger efficiency

F. lemmi

- We need an unbiased sample of events
- This should be collected with a reference trigger with looser and (if possible) orthogonal criteria
- Then the efficiency definition becomes

$$arepsilon(\mathcal{H}_{\mathcal{T}}) = rac{ ext{N}_{ ext{trig+presel+reference}}}{ ext{N}_{ ext{presel+reference}}}(\mathcal{H}_{\mathcal{T}})$$

which makes sense for data as well

 Obviously the reference should be unbiased, i.e., should not change MC efficiency distribution

Our current choices

Trigger efficiency

- Choice of signal triggers
 - HLT_PFHT450_SixJet40_BTagCSV_p056 OR
 HLT_PFHT400_SixJet30_DoubleBTagCSV_p056
- Choice of reference triggers
 - HLT_IsoMu24 OR HLT_IsoMu27
- These are the same choices of 4tops FH and $t\bar{t}H(bb)$

Novelties with respect to last week

Trigger efficiency

- Switched to TEfficiency
 - Discarding negative-weighted events
- Treating TEfficiencies correctly:
 - Fill one TEfficiency object for each sample
 - \bullet Add them together weighting by $\sigma L/N_{\rm gen}$
- Study trigger efficiency in the preselection
 - Don't want to extract a single SF for each category (right?)
- Add the request for exactly 1 tight muon to preselection
 - Make the reference trigger fire
- Use only tt
 for these studies
 - Argue that asking for 1 muon makes tt the dominant bkg

- Preselection $+ 1\mu$
- Reference is almost unbiased
- Efficiency $\approx 80\%$ on the plateau

- $\begin{array}{l} \bullet \ \ \text{Preselection} \, + \, 1 \mu \\ + \, N_{jets} \geq 6 \end{array}$
- Reference is almost unbiased
- Efficiency $\approx 90\%$ on the plateau

Trigger efficiency

- $\begin{array}{l} \bullet \ \ \mathsf{Preselection} \, + \, 1 \mu \\ + \, \mathsf{N}_{\mathrm{jets}} \geq 6 \, + \\ p_{T,\mu} > \mathsf{25} \ \mathsf{GeV} \end{array}$
- Reference is almost unbiased
- Efficiency $\approx 90\%$ on the plateau

Trigger efficiency

- $\begin{array}{l} \bullet \ \ \mathsf{Preselection} + 1\mu \\ + \ \mathsf{N}_{\mathrm{jets}} \geq 6 \ + \\ p_{T,\mu} > \mathsf{25} \ \mathsf{GeV} \ + \\ p_{T,\mathrm{iet}} > \mathsf{35} \ \mathsf{GeV} \end{array}$
- Reference is almost unbiased
- Efficiency > 95%on the plateau

Trigger efficiency

- wrt reference
- $\bullet \ \operatorname{Preselection} + 1 \mu$

Trigger efficiency

- truth efficiency
- ullet Preselection + 1μ

Trigger efficiency

- ratio ref/truth
- $\qquad \text{Preselection} + 1 \mu \\$
- Ratio is very close to 1: reference is unbiased

errors

- Preselection $+ 1\mu$
- Quadrature sum of errorUp and errorLow for num and den
- Propagate these error to the ratio

Trigger efficiency

Conclusions

Trigger efficiency

- All these plots are computed wrt HT(jets)
 - I can check HT(jets+leptons)
- I can add more processes (easy now that I have a basis)
- My opinions:
 - The results make sense in general
 - The more the cuts, the higher the efficiency
 - In the phase space in which both the signal and reference triggers are efficient, the reference is fully unbiased
 - 2D plots make sense as well
- Am I ready to see what happens in data?