

强子分子态

郭奉坤

中国科学院理论物理研究所

BEPCII升级暨BESIII物理联合研讨会

25 April 2021

Charmonium-like structures

2

Charmonium-like structures

 $B \rightarrow J/\psi \phi K$

Figure modified from Dong, FKG, Zou, 2101.01021 w/ new LHCb data, arXiv:2103.01803

Some recent reviews

Lots of new hadron resonances and resonance-like structures were found since 2003

- H.-X. Chen et al., *The hidden-charm pentaquark and tetraquark states*, Phys. Rept. 639 (2016) 1 [arXiv:1601.02092]
- A. Hosaka et al., *Exotic hadrons with heavy flavors X, Y, Z and related states*, Prog. Theor. Exp. Phys. 2016, 062C01 [arXiv:1603.09229]
- R. F. Lebed, R. E. Mitchell, E. Swanson, *Heavy-quark QCD exotica*, Prog. Part. Nucl. Phys. 93 (2017) 143 [arXiv:1610.04528]
- A. Esposito, A. Pilloni, A. D. Polosa, *Multiquark resonances*, Phys. Rept. 668 (2017) 1 [arXiv:1611.07920]
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, *Hadronic molecules*, Rev. Mod. Phys. 90 (2018) 015004 [arXiv:1705.00141]
- S. L. Olsen, T. Skwarnicki, *Nonstandard heavy mesons and baryons: Experimental evidence*, Rev. Mod. Phys. 90 (2018) 015003 [arXiv:1708.04012]
- M. Karliner, J. L. Rosner, T. Skwarnicki, *Multiquark states*, Ann. Rev. Nucl. Part. Sci. 68 (2018) 17 [arXiv:1711.10626]
- C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33 (2018) 1830018 [arXiv:1808.01570]
- N. Brambilla et al., *The XYZ states: experimental and theoretical status and perspectives*, Phys. Rept. 873 (2020) 154 [arXiv:1907.07583]
- F.-K. Guo, X.-H. Liu, S. Sakai, *Threshold cusps and triangle singularities in hadronic reactions*, Prog. Part. Nucl. Phys. 112 (2020) 103757 [arXiv:1912.07030]

Hidden-charm states

- Masses of excited hadrons:
 - Radial excitations?
 - Excitation of light quark-antiquark pairs?
 - Hadron-hadron pairs?

- Indication from large N_c analysis: $\frac{V_{qq}[\overline{3}]}{V_{q\overline{q}}[1]} = \frac{1}{N_c 1}$ Lucha et al., 2012.02542
- Indication from functional method (DS and BS equations) Eichmann et al., 2008.10240
- Implication of confinement (large-size systems in favor of color-singlet clusters)?
- Experimental evidence? Hidden-charm states
- Indication of the importance of hadron-hadron channels in charmonium-like states
 - Higher statistics for energy region below ~4.8 GeV (BESIII, B decays)
 - Higher energies covering charmed baryon-antibaryon thresholds (up to 5.6 GeV)

(Near-)threshold structures

X.-K. Dong, FKG, B.-S. Zou, Phys. Rev. Lett. 126 (2021) 152001

- (Near-)threshold structures (S-wave)
 - > There must be nontrivial (near-)threshold structures for attractive interaction
 - Either threshold cusp or below-threshold peak
 - Peak more pronounced for heavier hadrons and stronger interaction
 - That's the why many (near-)threshold structures were observed in hidden-charm and hidden-bottom spectra
 - Structures are process dependent

Hadronic molecules

- Hadronic molecule: analogues of deuteron and other light nuclei dominant component is a composite state of 2 or more hadrons; extended
- Concept at large distances, so that can be approximated by system of multi-hadrons at low energies

Consider a 2-body bound state with a mass $M = m_1 + m_2 - E_B$

size:
$$R \sim \frac{1}{\sqrt{2\mu E_B}} \gg r_{\text{hadron}}$$

 \Rightarrow well-separated scales, nonrelativistic EFT

• Only narrow hadrons can be considered as components of hadronic molecules, $\Gamma_h \ll 1/r, r$: range of forces

FKG, Meißner, PRD84(2011)014013; see also Filin et al., PRL105(2010)019101

Survey of hidden-charm hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, 《物理学进展》41 (2021) 65 [arXiv:2101.01021]

- Approximations:
 - Constant contact terms (V) saturated by light-vector-meson exchange, similar to the VMD in the resonance saturation of the low-energy constants in CHPT G. Ecker, J. Gasser, A. Pich, E. de Rafael, NPB321(1989)311
 - Single channels
 - > Neglecting mixing with normal charmonia
- Resummation:

G: two-point scalar loop integral regularized using dim.reg. with a subtraction constant matched to a Gaussian regularized G at threshold

 $T = \frac{V}{1 - VC}$

$$G(E) = \frac{1}{16\pi^2} \left\{ a(\mu) + \log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \log \frac{m_2^2}{m_1^2} + \frac{k}{E} \log \frac{(2kE+s)^2 - m_1^2 + m_2^2}{(2kE-s)^2 - m_1^2 + m_2^2} \right\}$$

$$G(E) = \int \frac{l^2 dl}{4\pi^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} \frac{e^{-2l^2/\Lambda^2}}{E^2 - (\omega_1 + \omega_2)^2 + i\epsilon} \text{ with } \omega_i = \sqrt{m_i^2 + l^2}$$

Hadronic molecules appear as bound or virtual state poles of the T matrix

X(3872) and related states

Isoscalar vectors and related states

- ✓ $Y(4260)/\psi(4230)$ as a $\overline{D}D_1$ bound state
- ✓ Vector charmonia around 4.4 GeV unclear
- ✓ Evidence for $1^{--} \Lambda_c \overline{\Lambda}_c$ bound state in BESIII data
 - Sommerfeld factor
 - Near-threshold pole
 - Different from *Y*(4630/4660)

Data taken from BESIII, PRL120(2018)132001

✓ Many 1⁻⁻ states in [4.8, 5.6] GeV

Isoscalar vectors and related states

Threshold <i>J^{PC}</i> [MeV]		Binding energy [MeV] $\Lambda = [0.5, 1.0]$ GeV		
$\Lambda_c ar{\Lambda}_c$	4573	$0^{-+}, 1^{}$	1.98	33.8
$\Sigma_c \bar{\Sigma}_c$	4907	$0^{-+}, 1^{}$	11.1	60.8
$\Xi_c \bar{\Xi}_c$	4939	$0^{-+}, 1^{}$	4.72	42.2
$\Sigma_c^* \bar{\Sigma}_c$	4972	$1^{-\pm},2^{-\pm}$	11.0	60.1
$\Sigma_c^* \bar{\Sigma}_c^*$	5036	$(0,2)^{-+},(1,3)^{}$	10.9	59.5
$\Xi_c \bar{\Xi}_c'$	5048	$0^{-\pm}, 1^{-\pm}$	4.79	41.9
$\Xi_c \bar{\Xi}_c^*$	5115	$1^{-\pm}, 2^{-\pm}$	4.84	41.6
$\Xi_c^{\prime} \bar{\Xi}_c^{\prime}$	5158	$0^{-+}, 1^{}$	4.87	41.5
$\Xi_c^* \Xi_c'$	5225	$1^{-\pm}, 2^{-\pm}$	4.91	41.3
$\Xi_c^* \bar{\Xi}_c^*$	5292	$(0,2)^{-+},(1,3)^{}$	4.95	41.0
$\Omega_c ar \Omega_c$	5390	$0^{-+}, 1^{}$	4.17	38.0
$\Omega^*_c \bar{\Omega}_c$	5461	$1^{-\pm}, 2^{-\pm}$	4.22	37.8
$\Omega_c^* \bar{\Omega}_c^*$	5532	$(0,2)^{-+},(1,3)^{}$	4.26	37.6

Hidden-charm pentaquarks

 $e^+e^- \rightarrow J/\psi p\bar{p}, \Lambda_c \overline{D}^{(*)}p, J/\psi \Lambda \overline{\Lambda}, \Sigma_c^{(*)} \overline{D}^{(*)}p, \dots$

12

More states with exotic quantum numbers

 Many baryon-antibaryon molecular states above 4.7 GeV, beyond the current exp. region

 $J/\psi\pi,J/\psi K,\ldots$

Conclusion

- e^+e^- up to 5.6 GeV highly desirable for understanding hidden-charm spectrum
 - (Near-)threshold structures expected for any pair with S-wave attraction
 - Many hidden-charm molecules are expected:
 - Meson-meson pairs via emission of light meson: $e^+e^- \rightarrow M_1M_2(\phi, \omega, \rho, \pi, \eta, K^{(*)})$
 - Many baryon-antibaryon pairs above 4.8 GeV: $e^+e^- \rightarrow B_1\overline{B}_2$

Experiments Lattice Thank you for your attention! EFT, models

Coupled channels

- Full threshold structure needs to be measured in a lower channel is coupled channels
- Consider a two-channel system, construct a nonrelativistic effective field theory (NREFT)
 - \succ Energy region around the higher threshold, Σ_2
 - > Expansion in powers of $E = \sqrt{s} \Sigma_2$
 - Momentum in the lower channel can also be expanded

• Very close to the higher threshold, LO:

$$T(E) = 8\pi\Sigma_2 \begin{pmatrix} -\frac{1}{a_{11}} + ik_1 & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - \sqrt{-2\mu_2 E - i\epsilon} \end{pmatrix}^{-1}$$
$$= -\frac{8\pi\Sigma_2}{\det} \begin{pmatrix} \frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon} & \frac{1}{a_{11}} \\ \frac{1}{a_{12}} & \frac{1}{a_{11}} - ik_1 \end{pmatrix},$$
$$\det = \left(\frac{1}{a_{11}} - ik_1\right) \left(\frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon}\right) - \frac{1}{a_{12}^2}$$

Effective scattering length with open-channel effects becomes complex, $\text{Im} \frac{1}{a_{22,\text{eff}}} \leq 0$

$$T_{22}(E) = -\frac{8\pi}{\Sigma_2} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1}$$

$$\frac{1}{a_{22,\text{eff}}} = \frac{1}{a_{22}} - \frac{a_{11}}{a_{12}^2(1 + a_{11}^2 k_1^2)} - i \frac{a_{11}^2 k_1}{a_{12}^2(1 + a_{11}^2 k_1^2)}$$

Consider a production process, must go through final-state interaction (unitarity)

 $\begin{array}{c} \bullet \\ \bullet \\ P_{\Lambda}^{\Lambda} \end{array} = P_{1}^{\Lambda} (V_{11}^{\Lambda})^{-1} T_{11}(E) + \left[P_{1}^{\Lambda} (V_{11}^{\Lambda})^{-1} V_{12}^{\Lambda} + P_{2}^{\Lambda} \right] G_{2}^{\Lambda} T_{21}(E)$

Poles in complex All nontrivial energy dependence are contained in $T_{11}(E)$ and $T_{21}(E)$ momentum plane: Case-1: dominated by $T_{21}(E)$, (0.37 - i0.08)GeV (0.04 - i0.08)GeV $T_{21} \quad T_{21}(E) = \frac{-8\pi\Sigma_2}{a_{12}(1/a_{11} - ik_1)} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]^{-1}$ G_2^{Λ}

$$|T_{21}(E)|^{2} \propto |T_{22}(E)|^{2} \propto \left\{ \left[\left(\operatorname{Re} \frac{1}{a_{22, \operatorname{eff}}} \right)^{2} + \left(\operatorname{Im} \frac{1}{a_{22, \operatorname{eff}}} - \sqrt{2\mu E} \right)^{2} \right]^{-1} \quad \text{for } E \ge 0 \\ \left[\left(\operatorname{Im} \frac{1}{a_{22, \operatorname{eff}}} \right)^{2} + \left(\operatorname{Re} \frac{1}{a_{22, \operatorname{eff}}} + \sqrt{-2\mu E} \right)^{2} \right]^{-1} \quad \text{for } E < 0$$

- Cusp at threshold (E=0)
- \blacktriangleright Maximal at threshold for positive $\text{Re}(a_{22,\text{eff}})$ (attraction)
- \blacktriangleright Peaking at pole for negative Re($a_{22,eff}$)

 $P_1^{\Lambda}[1+G_1^{\Lambda}T_{11}(E)]+P_2^{\Lambda}G_2^{\Lambda}(E)T_{21}(E)$

 $\equiv P_1 T_{11}(E) + P_2 T_{21}(E)$

• Case-2: dominated by $T_{11}(E)$

- $T_{11}(E) = \frac{-8\pi\Sigma_2 \left(\frac{1}{a_{22}} i\sqrt{2\mu_2 E}\right)}{\left(\frac{1}{a_{11}} ik_1\right) \left[\frac{1}{a_{22,\text{eff}}} i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]}$
- Cusp at threshold (E=0)
- One pole and one zero
- For strongly interacting channel-2 (large a₂₂), there must be a dip around threshold
- Abrupt drop if there is a nearby pole

Poles in complex momentum plane: (0.37 - i0.08)GeV (0.04 - i0.08)GeV (-0.09 - i0.08)GeV

More complicated line shape if both channels are important for the production

• Case-3: final states in channel-2

$$P_1 T_{12}(E) + P_2 T_{22}(E) \propto \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E)\right]^{-1}$$

- Suppression due to phase space
- Peak just above threshold would require the pole to be nearby

Phenomenology

with the T-matrix from L.-Y. Dai, M. R. Pennington, PRD90(2014)036004

Driving channel: $K\overline{K}$

Driving channel: $\pi\pi$

Model estimate of near-th. interactions

Constant contact terms saturated by light-vector-meson exchange, similar to VMD in the

resonance saturation of the low-energy constants in CHPT

	$L_i^r(M_\rho)$	V	A	S	S_1	η_1	Tota
Lr.	0.7 ± 0.3	0.6	0	-0.2	0.2 ^{b)}	0	0.6
r,	1.3 ± 0.7	1.2	0	0	0	0	1.2
-3	-4.4 ± 2.5	- 3.6	0	0.6	0	0	- 3.0
$L_{\mathbf{A}}^{\mathbf{r}}$	-0.3 ± 0.5	0	0	-0.5	0.5 ^{b)}	0	0.0
I.S.	1.4 ± 0.5	0	0	1.4 ^{a)}	0	0	1.4
ГГ 16	-0.2 ± 0.3	0	0	-0.3	0.3 ^{b)}	0	0.0
-7	-0.4 ± 0.15	0	0	0	0	-0.3	-0.3
-8	0.9 ± 0.3	0	0	0.9^{a}	0	0	0.9
Ľ	6.9 ± 0.7	6.9 ^{a)}	0	0	0	0	6.9
ŕ	-5.2 + 0.3	-10.0	4.0	0	0	0	- 6.0

Ecker, Gasser, Pich, de Rafael, NPB321(1989)311

ho, ω , ϕ , ψ^{\dagger}

• List of attractive pairs

$H\bar{H}$	$D^{(*)}\bar{D}^{(*)}[0,1^{\dagger}];$	$D_s^{(*)}\bar{D}^{(*)} \ [\frac{1}{2}^{\dagger}];$	$D_s^{(*)} \bar{D}_s^{(*)} [0]$
	$X(3872), Z_c(3900, 4020)$	$Z_{cs}(3985)$	X(4140)
	$Z_b(10610, 10650)$		
$\bar{H}T$	$\bar{D}^{(*)}\Xi_c [0];$	$\bar{D}_{s}^{(*)}\Lambda_{c}\left[0^{\dagger}\right]$	
	$P_{cs}(4459)$		
$\bar{H}S$	$\bar{D}^{(*)}\Sigma_{c}^{(*)}\left[\frac{1}{2}\right];$	$\bar{D}_{s}^{(*)}\Sigma_{c}^{(*)}[1^{\dagger}];$	$\bar{D}^{(*)} \Xi_c^{\prime(*)} [0];$
	$P_c(4312, 4440, 4457)$		
	$\bar{D}^{(*)}\Omega_{c}^{(*)}\left[rac{1}{2}^{\dagger} ight]$		
$T\bar{T}$	$\Lambda_c \bar{\Lambda}_c [0];$	$\Lambda_c \bar{\Xi}_c \left[\frac{1}{2}\right];$	$\Xi_c \bar{\Xi}_c \left[0,1\right]$
$T\bar{S}$	$\Lambda_c \bar{\Sigma}_c^{(*)} [1];$	$\Lambda_c \bar{\Xi}_c^{\prime(*)} \left[\frac{1}{2}\right];$	$\Lambda_c \bar{\Omega}_c^{(*)} \left[0^\dagger \right];$
	$\Xi_c \bar{\Sigma}_c^{(*)} [\frac{3}{2}^{\dagger}, \frac{1}{2}];$	$\Xi_c \bar{\Xi}_c^{\prime(*)} [1,0];$	$\Xi_c \bar{\Omega}_c^{(*)}\left[\frac{1}{2}\right]$
$S\bar{S}$	$\Sigma_c^{(*)} \bar{\Sigma}_c^{(*)} [2^{\dagger}, 1, 0];$	$\Sigma_{c}^{(*)}\bar{\Xi}_{c}^{'(*)}\left[\frac{3}{2}^{\dagger},\frac{1}{2}\right];$	$\Sigma_{c}^{(*)}\bar{\Omega}_{c}^{(*)}[0^{\dagger}];$
	$\left \Xi_{c}^{'(*)}\bar{\Xi}_{c}^{'(*)}\left[1,0\right];\right.$	$\Xi_c^{\prime(*)}\bar{\Omega}_c^{(*)}\left[\frac{1}{2}\right];$	$\Omega_c^{(*)}\bar{\Omega}_c^{(*)}\left[0\right]$

Comments on Z_c and Z_{cs}

- ✓ Isovector interaction between $D^{(*)}\overline{D}^{(*)}$ from light vector exchange vanishes
- Charmonia exchange could be important here: F.Aceti, M.Bayar, E.Oset et al., PRD90(2014)016003
 no mass hierarchy, a series of charmonia can be exchanged Dong, FKG, Zou, arXiv:2101.01021
 axial-vector meson exchange considered in Yan, Peng, Sanchez Sanchez, Pavon Valderrama 2102.13058
- ✓ Z_c (3900,4020) as $\overline{D}^{(*)}D^*$ virtual states
- ✓ $Z_{cs}(3985)$ as $D_s \overline{D}^*$, $D \overline{D}_s^*$ virtual state; there should also be a $D^* \overline{D}_s^*$ state around 4.1 GeV Z. Yang, X. Cao, FKG, J. Nieves, M. Pavon Valderrama, arXiv:2011.08725

Comments on *Z*_c and *Z*_{cs}

✓ Simultaneous fit to the BESIII and LHCb Z_{cs} data: Z_{cs} as virtual states

Ortega, Entem, Fernandez, 2103.07781

Bound state, virtual state and resonance

- Bound state: pole below threshold on real axis of the first Riemann sheet of complex energy plane
- Virtual state: pole below threshold on real axis of the second Riemann sheet
- Resonance: pole in the complex plane on the second Riemann sheet

Plots from Matuschek, Baru, FKG, Hanhart, 2007.05329;

 $m_{\phi}\,({
m MeV})$ M.-L. Du et al., PRD98(2018)094018

resonance

400

300

bound state virtual state

200

resonance

threshold

Ø

bound state

 $\begin{array}{ccc}
 250 & \Gamma_{6} \\
 200 & 2
 \end{array}$

(MeV)

intual state

600

 $\frac{150}{100}$

500

pole

2 POQ

For $\frac{1}{1/a_0 - i k}$, only bound or virtual state poles are possible

Hound state