Possible Topics for BEPCIII at $\sqrt{s} = 4.0 - 5.6$ GeV

Ying Chen

Institute of High Energy Physics, Chinese Academy of Sciences, China

IHEP, April 25, 2021

Outline

- I. Introduction
- II. Missing conventional charmonia

 $1^{+-} h_c(2P)$ $2^{-+} \eta_{c2}(1D)$ III. Possible $c\bar{c}g$ hybrids $(0, 1, 2)^{-+}$ states

IV. Summary

I. Introduction

Quark model for heavy quarkonium: Generalized Breit-Fermi Hamiltonian

$$H = 2m + \frac{p^2}{m} - \frac{p^4}{4m^3} + V(r) + H_{SI} + H_{LS} + H_{SS} + H_T$$
$$H_{SS} = \frac{2}{3m^2} S_1 \cdot S_2 \nabla^2 V_V(r)$$
$$H_{LS} = \frac{1}{2m^2 r} \left(3 \frac{d}{dr} V_V(r) - \frac{d}{dr} V_S(r) \right) L \cdot S$$
$$H_T = \frac{1}{12m^2} \left(\frac{1}{r} \frac{d}{dr} V_V(r) - \frac{d^2}{dr^2} V_V(r) \right) S_{12}$$

$$S_{12} \equiv 12 \left(\frac{(S_1 \cdot \vec{r})(S_2 \cdot \vec{r})}{r^2} - \frac{1}{3}S_1 \cdot S_2 \right)$$
$$\langle L \cdot S \rangle = \frac{1}{2} [J(J+1) - L(L+1) - S(S+1)]$$
$$S_{12} = \frac{4}{(2L+3)(2L-1)} \left[S^2 L^2 - \frac{3}{2}L \cdot S - 3(L \cdot S)^2 \right]$$

For
$$S = 1, L \neq 0$$

J	<i>L</i> – 1	L	L+1
$\langle L \cdot S \rangle_J$	-(L + 1)	-1	L
$\langle S_{12} \rangle_J$	2(L+1)	2	2 <i>L</i>
-	$\frac{-2L-1}{2L-1}$		$-\frac{1}{2L+3}$

$$\langle L \cdot S \rangle_{avg} = \frac{1}{3(2L+1)} \sum_{J} \frac{1}{2J+1} \langle L \cdot S \rangle_{J} = 0$$

$$\langle S_{12} \rangle_{avg} = \frac{1}{3(2L+1)} \sum_{J} \frac{1}{2J+1} \langle S_{12} \rangle_{J} = 0$$

$$\langle H_{SS} \rangle \propto |\phi_{nL}(0)|^{2} \text{ for } V_{V}(r) \propto \frac{1}{r}; \qquad \nabla^{2} \frac{1}{r} = 4\pi \delta(r)$$

Center-of-gravity mass: *M*_{*COG*}

$$M_{COG}(nP) = \frac{1}{9} \left(M_{\chi_{c0}} + 3M_{\chi_{c1}} + 5M_{\chi_{c2}} \right) = M_{h_c}(nP)$$
$$M_{COG}(nD) = \frac{1}{15} \left(3M_{\psi(nD)} + 5M_{\psi_2} + 7M_{\psi_3} \right) = M_{\eta_{c2}}(nD)$$

Experimental results:

$$M_{h_c}(1P) = 3525.4(1) \text{ MeV}$$
$$M_{COG}(1P) = \frac{1}{9} \left(M_{\chi_{c0}} + 3M_{\chi_{c1}} + 5M_{\chi_{c2}} \right) \approx 3525.3(1) \text{ MeV}$$

$$M_{h_b}(1P) = 9899.3(8) \text{ MeV}$$

$$M_{COG}(1P) = \frac{1}{9} \left(M_{\chi_{b0}} + 3M_{\chi_{b1}} + 5M_{\chi_{b2}} \right) \approx 9899.9(5) \text{ MeV}$$

$$M_{h_b}(2P) = 10259.8(1.2) \text{ MeV}$$
$$M_{COG}(2P) = \frac{1}{9} \left(M_{\chi_{b0}} + 3M_{\chi_{b1}} + 5M_{\chi_{b2}} \right) \approx 10260.3(6) \text{ MeV}$$

II. Missing conventional charmonia

Latest lattice QCD results of charmonium

1D states:

	η_{c2}	ψ(3770)	ψ ₂ (3823)	ψ ₃ (3842)
J ^{PC}	2-+	1	2	3
$^{2S+1}L_J$	$^{1}D_{2}$	${}^{3}D_{1}$	$^{3}D_{2}$	${}^{3}D_{3}$
M(MeV)	?	3773.3(4)	3822.2(1.2)	3842.7(2)
Γ(MeV)	?	87.6(4)	< 16	2.8(6)

$$M_{COG} = \frac{1}{15} \left(3M_{\psi(3770)} + 5M_{\psi_2} + 7M_{\psi_3} \right) \approx 3822 \text{ MeV}$$
$$M_{\eta_{c2}} \approx M_{COG}?$$

Lattice results of $M_{\eta_{c2}}$:

- Quenched approximation: $M_{\eta_{c2}} \approx 3800(30)$ MeV.
- $N_f = 2 + 1$ lattice QCD: $M_{\eta_{c2}} M_{\eta_c} \approx 860$ MeV.

Decay of η_{c2} : almost no open-charm decay, small width

- $D\overline{D}$ decay is prohibited!
- $M < E_{th}(D\overline{D}^*) \approx 3870$

• Production on e^+e^- collider:

$$e^+e^- \rightarrow \psi(3S, 4S) \rightarrow \gamma + \eta_{c2}$$

 $e^+e^- \rightarrow \psi(4160) \rightarrow \gamma + \eta_{c2}$

 The former is the hindered M₁ transition in the nonrelativistic limit, while the later can be suppressed by the orthogonality of the wave functions.

$$\Gamma_{M_{1}}\left(n^{2S+1}L_{J} \to n'^{2S'+1}L_{J'}' + \gamma\right) = \frac{4}{3}e_{c}^{2}\frac{\alpha}{m_{c}^{2}}E_{\gamma}^{3}\frac{E_{f}}{M_{i}}$$
$$\times \frac{2J'+1}{2L+1}\delta_{LL'}\delta_{S,S'\pm 1}\left|\left\langle n'^{2S'+1}L_{J'}'\right|n^{2S+1}L_{J}\right\rangle\right|^{2}$$

Hadronic transition:

 $e^+e^- \rightarrow \psi(nS, nD) \rightarrow (\omega, \phi)\eta_{c2}(P - wave)$ more?

2P states:

	h _c	Xc0	Xc1	Xc2
J ^{PC}	1+-	0++	1++	2++
$^{2S+1}L_J$	${}^{1}P_{1}$	${}^{3}P_{0}$	³ <i>P</i> ₁	${}^{3}P_{2}$
<i>M</i> (1P)(MeV)	3525.4(1)	3414.7(3)	3510.7(1)	3556.2(1)
Γ(1P)(MeV)	0.70(36)	10.8(6)	0.84(4)	1.97(9)
<i>M</i> (2 <i>P</i> ?)(MeV)	?	~3860(50)	3871.7(2)	3922(1)
Γ(2 <i>P</i> ?) (MeV)	?	~ 200	<1.2	35(3)

$$M_{COG}(1P) = \frac{1}{9} \left(M_{\chi_{c0}} + 3M_{\chi_{c1}} + 5M_{\chi_{c2}} \right) \approx 3525.3(1) \text{ MeV}$$
$$M_{COG}(2P) = \frac{1}{9} \left(M_{\chi'_{c0}} + 3M_{\chi'_{c1}} + 5M_{\chi'_{c2}} \right) \approx 3898(6) \text{ MeV}$$

J ^{PC}	$0^{++}(\chi_{c0})$	$1^{++}(\chi_{c1})$	$2^{++}(\chi_{c2})$	$1^{+-}(h_c)$	COG
aM(1P)	0.31586(6)	0.32043(9)	0.32347(6)	0.32166(23)	0.32161(5)
aM(2P)	0.3562(3)	0.3571(5)	0.3752(10)	0.3670(5)	0.3670(6)

(a) 0^{-+}

(b) 0^{++}

(c) 1⁻⁻

(d) 1^{+-} (e) 1^{++} (f) 2^{++}

III. Possible $(1^{--}, (0, 1, 2)^{-+}) c\overline{c}g$ hybrids

1. Lattice observations:

A. Spectrum from two-types of spatially extended operators:

#node	$m(1^{})$	$m(0^{-+})$	$m(1^{-+})$	$m(2^{-+})$
	(GeV)	(GeV)	(GeV)	(GeV)
0	3.109(5)	3.010(4)	-	-
0	3.703(82)	3.672(76)	-	-
0	4.591(69)	4.551(63)	4.309(2)	4.419(3)
1	5.460(31)	5.393(28)	5.693(12)	5.779(12)
2	8.226(99)	8.286(109)	7.661(31)	7.708(29)

B. BS wave functions (Y. Ma et al., arXiv:1910.09819 (hep-lat))

Results of type-I operator

Results of type-II operator

Discussion in the "halo-charmonium" picture

 $J/\psi \pi^+\pi^-$ mode: relative S-wave between J/ψ and $\pi^+\pi^-$

 $\chi_{c0}\omega$ mode: relative S-wave between χ_{c0} and ω

 $h_c \pi^+ \pi^-$ mode:

relative P-wave between h_c and $\pi^+\pi^-$

The $c\overline{c}$ in the halo charmonium is spin singlet (S=0),				
$J/\psi\pi^+\pi^-$	mode:	J/ψ (S=1), spin flipping, m_c suppressed, no refugal barrier		
χ _{c0} ω	mode:	χ_{c0} (S=1), spin flipping, m_c suppressed, no refugal barrier		
$h_c \pi^+ \pi^-$	mode:	h _c (S=0), no spin flipping, but suppressed by the refugal barrier.		

In this picture, it is understandable that the above three modes have similar cross section at $\sqrt{s} \sim 4.22 \ GeV$

C. 1^{-+} charmonium-like hybrid from $N_f = 2 + 1$ lattice QCD (W. Sun et al., arXiv:2012.06228 (hep-lat), to appear in PRD)

$$H_{QCD} \equiv -\int d^{3}\vec{x} T_{44}(\vec{x}) = H_{q} + H_{g} + \frac{1}{4} \left(H_{g}^{a} + H_{m}^{\gamma} \right)$$
$$= H_{m} + H_{E} + H_{g} + \frac{1}{4} H_{a}$$
$$\overline{T}_{44}^{c} = \frac{1}{2} \int d^{3}\vec{x} \ \overline{c}(x) \left(\gamma_{4} \overleftarrow{D}_{4} - \frac{1}{4} \gamma_{\mu} \overleftarrow{D}_{\mu} \right) c(x)$$
$$\langle x \rangle_{c} = \left(\frac{4}{3} \langle H | \overline{T}_{44}^{c} | H \rangle \right) / (M_{H} \langle H | H \rangle)$$

ensemble	$L^3 \times T$	$a~({\rm fm})$	$m_{\pi} \ ({ m MeV})$	$N_{ m cfg}$
32I	$32^3 \times 64$	0.0828(3)	300	200
48IF	$48^3 \times 96$	0.0711(3)	278	100

• Mass spectrum

• Quark mass contribution to charmonium(-like) states $\langle H_m \rangle$;

For all these states,

 $\langle H_m \rangle \approx 2 \left(\overline{m}_c (3 GeV) \sim \overline{m}_c (\overline{m}_c) \right)$

• Charm quark momentum fraction $\langle x \rangle_c^R$

- $\langle x \rangle_c^R$ is almost the same for conventional charmonia;
- $\langle x \rangle_c^R$ of $(1, 2)^{-+}$ charmonium-like hybrids is obviously smaller.

2. Search for $c\bar{c}g$ hybrids on e^+e^- collider with $\sqrt{s} \sim 4.0 - 5.6$ GeV

$$e^+e^- \rightarrow \psi(nS) \rightarrow \gamma + (0, 1, 2)^{-+}$$

- *M*₁ transition dominates,
- Partial width is of order O(1) keV for transitions between conventional charmonia.

 $\Gamma(J/\psi \rightarrow \gamma \eta_c) = 1.6(4) \text{ keV}$ (exp.)

 $\Gamma(\eta_{c2} \rightarrow \gamma J/\psi) = 3.8(9) \text{ keV}$ (th.)

A lattice calculation gives a much larger partial width for

 $\Gamma(\eta_{c1}(1^{-+}) \to \gamma J/\psi) = 115(16) \text{ keV}$

• The partial width is proportional to $(E_{\gamma})^3$:

for $\eta_{c1}(1^{-+}) \rightarrow \gamma J/\psi$, $E_{\gamma} \sim 1 \text{ GeV}$; for $\psi(4415) \rightarrow \gamma \eta_{c1}$, $E_{\gamma} \sim 0.1 \text{ GeV}$ for $M_{\eta_{c1}} \sim 4.3 \text{ GeV}$

 $\Gamma(\psi(4415) \rightarrow \gamma \eta_{c1}) \sim O(0,1) - O(1) \text{ keV}$

• Therefore

 $\Gamma(\psi(4415) = 60(20) \text{ MeV})$

 $Br(\psi(4415) \rightarrow \gamma + (0, 1, 2)^{-+}) \sim O(10^{-6}) - O(10^{-5})$

• Decay modes of $(0, 1, 2)^{-+} c \overline{c} g$ hybrids $\chi_{cJ} \eta(\eta'), J/\psi \omega(\phi)$, etc.

V. Summary

- Conventional charmonium states to be found $\eta_{c2}(1^1D_2), \quad h_c(2^1P_1)$
- $(0,1,2)^{-+}$ Charmonium-like hybrids $(0,1,2)^{-+}$

Thanks!

B. Energy levels of hybrid charmonia

