BESII现状、老化及升级

董明义

On behalf of the working group

2021.4.25

主要内容

- BESIII探测器简介
- BESIII探测器现状及老化情况
- BESIII探测器未来运行关键问题及升级准备

The BESIII detector

- General purpose detector at BEPCII, $E_{cm} \approx 2-5$ GeV, $L_{peak} \approx 10^{33}/cm^2/s$
- Versatile researches in τ-charm physics

- 四个子探测器: MDC, TOF, EMC, MUC
- SSM: Solenoid Superconducting Magnet
- Trigger system
- DAQ system
- Slow control system

BESIII performance

Sub detector		Design Performance	Achieved Performance
MDC		$\sigma_{r\phi}=130\mu m$ $\Delta p/p=0.5\%@1 GeV$ (B=1T) $\sigma_{dE/dx}=6\%$	$\sigma_{r\phi}=115\mu m$ $\Delta p/p=0.47\%@1GeV$ (B=1T) $\sigma_{dE/dx}=5.2\%$
TOF	Barrel	$\sigma_T = 80 \sim 90 \ ps$	$\sigma_T = 67 \sim 70 \ ps$
	Endcap	$\sigma_T = 110 \sim 120 ps$ (before upgrade) $80 ps \sim 100 ps$ (after upgrade)	$\sigma_T = 138 ps$ (before upgrade) $60 ps \sim 70 ps$ (after upgrade)
EMC		$\Delta E/E = 2.5\% \ @1GeV$ $\sigma = 6 \ mm/\sqrt{E}$	$\Delta E/E = 2.5\% \ @1GeV$ $\sigma = 6 \ mm/\sqrt{E}$
MUC		$\sigma_{r\phi}=14mm{\sim}17mm$ $\sigma_z{\sim}17mm$	$\sigma_{r\phi} = 14mm \sim 15mm$ $\sigma_z \sim 17mm$

获取的数据

- Totally about 30 fb⁻¹ in 12 year running
- Data sets collected so far include
 - $10 \times 10^9 \, \text{J}/\psi'$ events
 - $0.5 \times 10^9 \, \psi'$ events + $0.7 \times 10^9 \, \psi'$ events
 - Scan data [2.0, 3.08] GeV; [3.735, 4.600] GeV
 130 energy points, about 2.0 fb⁻¹
 - Large data sets for XYZ study above 4.0 GeV about 22 fb⁻¹
 - Unique data sets at open charm thresholds

$$3.77\,\mathrm{GeV}\ 2.93\,\mathrm{fb}^{-1}\ Dar{D}$$
 $4.008\,\mathrm{GeV}\ 0.48\,\mathrm{fb}^{-1}\ D_s^+D_s^ 4.18\,\mathrm{GeV}\ 3.2\,\mathrm{fb}^{-1}\ D_sD_s^*$
 $4.6-4.7\,\mathrm{GeV}\ 0.6+{3.8}\,\mathrm{fb}^{-1}\ \Lambda_c^+\bar{\Lambda}_c^-$

主要内容

- BESIII简介
- BESIII探测器现状及老化情况
- BESIII探测器未来运行关键问题及升级准备

MDC 场丝老化

Malter discharge : a selfsustaining local discharge Did not disappear even after stopping the irradiation, until the HV was powered off

- 2012年内室Malter放电,内室无法工作,工作气体中添加2000ppm 水蒸气(21 ±0.3 ℃)解决放电问题
- 此后没有出现类似放电

MDC 信号丝老化

- 前10层尤其是内室增益显著 下降
- 第一层增益下降达 49%, 累 计电荷达216 mC/cm
- 前两层增益降下速度:约3%-4%/年
- 外室11-43层增益无明显变化

MDC 性能

XYZ at 4.74 GeV

- 内室,尤其前4层丝分辨明显变差,击中效率也明显降低
- 除了老化导致增益变差外,前4层的高压设置也低于正常工作高压(高束流本底所致),分别为96%、97%、98%、99%,对于第一层气体增益降低到31%(6×10³)
- 外室分辨和效率变化不明显

MDC死道情况

No. of sense wires	No. of Preamp.	Date	Problems
16S11-1~8 (S16-81~88)	E16-11	2010.6.16	Preamp discharge
17S2-5 (S17-13)	W17-2	2009.5.14	preamp dead
20S14-7 (S20-111)	E20-14	2010.1.12	preamp dead
13S11-8 (S13-88)	W13-11	2012.3.23	preamp dead
16S2-6 (S16-14)	E16-2	2012.3.23	preamp dead
29S7-8 (S29-56)	W29-7	2015.9.11	preamp dead
30S19-1(S30-145)	W30-19	2015.12.1	preamp dead (2015.12.1) recovered (2016.12-2017.6)
20021 ((020 246)	F20. 21	201611	Dead again (2017.12.3)
38S31-6(S38-246)	E38-31	2016.11	preamp dead
42S5-6 (S42-38)	E42-5	2007	sense wire discharge
43S21-8 (S43-168)	W43-21	2015.2.10	sense wire discharge
33S19-1(S33-145)	W33-19	2015.9.24	sense wire discharge
33S19-4(S33-148)	W33-19	2015.9.24	sense wire discharge
36S2-6 (S36-22)	E36-3	2017.12.3	preamp dead
10S3-3 (S10-19)	E10-3	2017.12.3	preamp dead
37S15-7 (S37-119)	W37-15	2017.12.3	preamp dead
35S27-6 (S35-214)	W35-27	2017.12.3	preamp dead
16S2-1~8 (S16-9~16)	E16-2	2019.12.13	preamp noise (powered off)
41S29-5 (S41-229)	W41-29	2020.11.3	preamp dead

- 目前总共32个死道,其中第16层有两个前放板(包含16个通道)不工作
- 主要原因为前放高压部分放电或信号丝本身问题
- 问题前放可以在谱仪端门打开时更换

TOF老化

- 老化导致闪烁体衰减长度和光输出下降,指数衰减趋势
- 通过提高PMT高压来补偿增益,从而保持探测效率

11/01/01	16/01/01 Date (yy/mm)	2
时间	衰减长度(米)	
2009年	1.8	
2020年	1.3	
2025年	1.2	

1.1

2030年

2200	- 1			
2000 8 4	_		光输出3	变化
1600	_		1	eagee
l	16/01/01	16/12/31 Da	18/01/01 ate(yy/mm)	19/01/01

时间	増益	下降为(/09)
2009年	2025	-
2020年	1150	58%
2025年	1016	50%
2030年	968	48%

桶部TOF性能

- 桶部TOF分辨变化不明 显
- 桶部TOF效率整体呈下 降趋势。通过调整高压, 保持探测效率

桶部TOF历在性能小结

Year(data)	Resolution	Effi/%	Status
2009~2011	67~70	~95%	
2012~2015	67~70	~94%	HV adjusted in 2012
2016~2017	72ps	~94	HV adjusted in 2016
2018~2019	68, 69	~93	
2020~2021	77~78	~93	HV adjusted in 2020

桶部TOF高压调整情况

PMT高压历年调整概况 (Vmax=2400V)

调整时间	平均HV
2009	1788(+0)
2012	1818(+30)
2016	1855(+67)
2020	1886(+98)
2030	1788+200?

- PMT: 平均输出累计电荷30C < 360C (Max)
- 以往同类型探测器寿命10年左 右,塑闪和PMT有无寿命临界点?

TOF with Plastic Scintillator + PMT

Detectors	Times	Scintillator	Size(LxWxH)(cm)	PMT	Time reso.(ps)	Life time (years)
DELPHI	1990	NE110	350 X 20 X 2	EMI19902KB	1200	11
CLEOII	1992	BC408	280 X 10 X 5	XP2020	139	10
NA49	2000	BC408	(12-48)X(1-1.25) X(1.5-2.4)	R3478	80	11
BELLE	2002	BC408	255 X 6 X 4	R6680	90	8
CDFII	2003	BC408	279 X 4 X 4	R7761	100	9
BESIII	2008	BC408	230X5.7-6.5X5	R5924	67~70	16??

端盖TOF

- 旧端盖受本底和噪声等影响, 分辨约138ps
- 2015年完成升级安装,采用 MRPC技术,读出条双端读出
- 几年来工作稳定,性能良好,未出现明显变化

Year	Resolution(ps)	
2016	60-70	
2018	54	
2019	53	
2020	60	
2021	62	

EMC性能

- 利用 Bhabha事例,研究EMC的性能
- 数据和MC很好的符合,EMC 的性能很稳定
- 不同年份的数据 (2009, 2012 & 2018 的 J/Psi) 能量分辨基本相同

Energy resolution vs. ThetaID

EMC晶体单元脱胶问题

- 晶体PD脱胶:光产额突然降低(≥20%)
- 2010年夏季检修, (1,89)@Barrel光产 额突然降低~65%, 电子学增益乘2。
- 2017年夏季检修,更换了制冷空调, 温度过低导致
- 10 块晶体光产额降低超过20%, 其中4块晶体{(2,103), (2,104),(2,105), (41,97)} 光产额降低了~60-70%, 对这4块晶体 电子学增益乘2。
- 到目前27块晶体有PD脱胶现象,其中5 块严重脱胶
- 目前EMC没有出现失效探测单元

Time	Number of Unglue Crystal (光产额突然降低≥20%)
2009-4~5	1
2009-7~9	14
2010-7~9	2 其中(1,89)降低~65%
2011-2017	0
20 17-2018	10 其中4块晶体降低~60 -70 %
2018-2021	0

Total unglued modules: 27

温度控制非常重要

EMC 晶体老化情况

- 晶体单元的辐照损伤可以通过离线刻度系数来评估
- 相对刻度系数: Relconst= Average of 6240 calibration constants Average of the first set of calibConst@2009
- The CalibConst is also influenced by the background

近几年,量能器晶体单元性能基本稳定

- ➤ The crystal (1,89) @ Barrel was PD unglued in the 2010 summer, and its light output decreases ~65%
- → 4 crystals (2,103), (2,104),(2,105), (41,97) @ Barrel were PD unglued in the 2017 summer, and their light output decrease ~60%-70%.

Those crystals: electronics gain by 2

高能量下的dead channel问题

- 高能量下(i.e.4680)晶体单元的信号超过电子学量程后会出现过饱和死道问题,即电子学饱和后其输出可能会丢失,造成该事例下该模块无响应。
- 主要发生在Bhabha 事例挑选,物理事例 一般不会出现饱和
- 过饱和死道随能量升高而加剧,需要研究 评估对物理的影响

特殊死道影响高能量簇射,有电子学饱和的簇射出现MC和数据的不一致现象:

MUC电子学问题

- •加速器top-up运行时,取数中由于电子学的原因,经常出现一些模块丢失的情况 (west end seg4_layer5,6,7,8),一般通过重新开始新的run,或者重启MUC VME机箱及低压电源问题模块可以恢复正常
- 在加速器decay模式中,如Ψ'取数,MUC的电子学相对比较稳定,仅偶尔重启MUC VME机箱及低压电源
- 己与科大进行了沟通,暑期检查修复相关问题

主要内容

- BESIII简介
- BESIII探测器现状及老化情况
- BESIII探测器未来运行关键问题及升级准备

BESIII未来运行及升级考虑

- BEPCII升级到BEPC3, 2.35GeV下,流强提高一倍, 亮度提高3倍
- 束流本底随束流流强的变化:增大4倍(流强影响2-3倍,真空影响1倍),能量变化对束流本底的影响?
- 如何保证BESIII探测器未来10年的运行?尤其是BII升级后的高束流本低下稳定工作?并考虑性能提升的可能以满足物理研究的需求?
- 关键问题、瓶颈、相应的考虑及准备
 - 束流本底
 - 噪声
 - 探测器及电子学元器件老化 (备件)
 - 部分子系统升级考虑及准备

BESIII探测器运行及升级讨论会

- 2月4日,5日上午召开了BESIII探测器mini workshop
 - 13个报告
 - 讨论了BESIII探测器的老化、备品备件,未来10年运行可能出现的问题和应对措施(尤其是BEPCII升级到B3后高能量下的高亮度、高本底运行环境下的运行),以及可能的upgrade proposal。提前布局,以应对风险
- 4月2日BESIII探测器升级讨论会
 - 讨论了以漂移室电子学系统为主要的升级改造内容,其中涉及DAQ 及触发系统相应的升级改造, 另外讨论了MUC电子学的升级改造, TOF及MDC升级关键技术R&D,以及束流本底研究

束流本底及数据传输问题

- 束流本底对最内层气体探测器是巨大的挑战,无法在正常高压下工作
- 束流本底还导致计数率和事例长度增加,数据传输问题:
 - Psi(2s) 取数开始阶段, DAQ 经常报MDC机箱错误.损失积分亮度
 - MDC机箱报错与束流本底(流强)有关. MDC数据长度 >10kB/event后出错概率增大
 - 相关实验:
 - 插件、电缆、机箱等更换, DAQ数据传输交换机更换
 - 增加 DAQ处理MDC数据进程 (2->4->16)
 - 增加Q阈值压缩噪声数据研究(80->120,150,200),初步结论对物理没有明显影响
- 需要重点关注本底,开展模拟,实验等相关研究

噪声问题

- 从谱仪开始运行至今,电子学噪声一直都是很棘手的问题
- 不仅影响数据质量,还增加数据传输压力;严重时,内室无法工作(occupancy >70%)
- 各种噪声源和降低噪声手段
 - 噪声源处理: DCCT (屏蔽,远离对撞区),低温真空泵电源控制器(更新),超导磁铁等
 - 地线连接: 谱仪地线, 端盖量能器地线, 加速器4区地线, 低温管道等
- 未来需继续关注噪声,定位噪声源,增加抗干扰能力

BESIII探测器整体情况

- 已经运行约13年(2008年开始), 部分电子学元器件购买超过16年(2005年之前),未来10年的运行有一定的不确定性及风险
 - 漂移室外室目前运行及性能上没有问题(需重点关注,及相关准备),内室老化严重(增益下降3-4%/年,第一层增益下降约50%),需要更新
 - 桶部TOF闪烁体性能下降(提升PMT工作高压补偿,未来10年 1788+200V,上限 2400V。但是否有临界点,不明确。ETOF 2015年完成升级安装,目前运行稳定
 - EMC晶体光输出没有显著变化(PD脱胶的模块除外),目前有27块模块脱胶, 需严格控制好温度
 - MUC分辨和效率没有显著变化, 需解决top-up模式电子学丢模块问题
 - 小角亮度探测器只有一个前放盒工作,无备件,正在研制
- 所有子系统常规备件基本够用,按计划购买,但为了确保未来10年运行,需要有一些增加或改进的备件(备件部分器件已经停产)
- 所有子系统,尤其是MDC和TOF探测器,需做好充分准备,一旦出现问题迹象(比如漂移室外室丝变化,TOF光输出大幅下降等),马上讨论替代方案

增加和改进的备件

• TOF电子学

- 桶部时间电荷测量插件(FEE),需要科大负责维修
- 端盖时间电荷测量插件(TDIG),需要科大增加备件
- 时钟插件(Fclk),快控制插件(Fctrl),需要科大增加备件
- 端盖校准刻度插件(CTTP), NIM插件, 需要高能所增加备件

• EMC

• 电荷测量插件备件生产已经开始

• 触发系统

• 21种板卡,更换为核心板的方式,减少复杂核心板卡种类,采用各个子系统分步替换的方案

DAQ

- 前端系统MVME 5500控制器备件三十几个,在线和备件无法确保10年运行,需要进一步考虑后备方案
- 后端系统硬件可按照约十年寿命逐步更新,后端软件预期可再次升级一次操作系统(需要离线软件配合)或者采用容器方案,保持系统不变(需要测试软件是否适配)

• 小角亮度探测器

- 前放及数据采集板
- **慢控制,气体**:操作系统升级,读出方案升级,连接器更换,气体新增部分备件 (包括CGEM气体部分)

BESIII探测器子系统升级准备及考虑

- 漂移室内室
- 漂移室外室电子学, 触发及DAQ
- MUC电子学
- 超导磁铁阀箱等
- 关键技术R&D (TOF等)

MDC内室upgrade

- 漂移室外室: 目前运行及性能上没有问题
- 漂移室内室:
 - 新丝室 (backup)
 - CGEM (目前正在研制)
 - 硅像素探测器关键技术研究

漂移室新内室

- 设计研制了一个新的漂移室内室,作为漂移室的基本保障
- 根据漂移室老化研究经验,新内室设计中,缩短有效立体角外丝长的全新台阶型端面板,减小噪声计数,降低丝电流及断丝风险,并提高z向分辨率

新内室宇宙线测试

- 宇宙线测试结果表明,新内室性能满足BESIII的要求,且由于台阶型端面板设计使斜丝倾角变大,z向分辨提高约13%
- 新内室建造工作圆满完成,2016年底通过科学院组织的评审,为漂移室的重要保障

CGEM内径迹室

- 中意合作建造一个3层CGEM内径迹室(CGEM-IT)以替换漂移室内室
 - Layer1和layer2在高能所完成组装,进行联调及宇宙线测试,初步结果表明系统基本正常。(存在问题:噪声、漏水、第二层G1电流大等)
 - Layer3建造完成,在意大利进行初步测试时出现了意外,目前进一步检查评估
 - Layer3通过初步测试后运至高能所,组装、宇宙线测试、DAQ,Slow control更换,取数及性能分析
- 已取消2022年夏天安装计划
- 不确定性:建造及整体调试,出现问题的处理,性能是否达到设计目标, 安装时间等,立项时并未考虑BII升级后的束流本底情况

Layer3

MAPS 探测技术研究

- 以漂移室内室升级为契机,开展MAPS硅像素内径迹探测器的研究,研制1/10漂移室内室规模的硅像素探测器模型,掌握硅像素探测器研制的关键技术及方法
- 完成芯片测试、探测器模块和模型的研制和测试、分析等完整的系统性工作
 - 束流测试结果: 模块位置分辨小于5μm, 探测效率大于96%
 - 芯片间的安装定位精度达到10 μm, 优于STAR顶点探测器的50 μm
 - 单个探测模块的物质量约为0.35% X₀

束流测试

- Spatial resolution: about 5 μm. Maximum of tracking efficiency: 96%
- Updated the readout and DAQ system for next test

- The average gap between neighboring chips is better than 10 µm.
- The material budget is about 0.35% X₀ / ladder (based on Highland formula)
- 优于设计指标

BESIII漂移室电子学升级方案

• 升级要求及计划

- (i) 满足升级前的指标要求
- (ii) 更换不工作的前端放大器
- (iii) 前端电缆保持不动
- (iv) 后端电子学进行升级,以满足加速器亮度提高的要求,并同时解决电子学备件问题
- (v) 整体电子学系统与其他系统接口相应变更

• 系统结构

- 前放、电缆不变,前放 与主放之间通过原有18 米电缆连接
- 16个9UVME机箱对应两 端读出的16个扇区,实 现时间电荷的测量
- 1个micro TCA机箱实现对 其余16个9UVME机箱的 控制和与触发系统的接

主要升级改动

- (i) 时间电荷测量插件(MQT)
 - 32通道,保持子母板形式
 - 子板上通过1GHz采样+数据处理实现电荷时间测量,相应滤波成形电路重新设计
 - 在FPGA内嵌入网卡,数据通过TCP/IP协议传输到DAQ
 - 在母板上配置小白兔电路,快控制信号及信息反馈通过小白兔光纤传输
 - 远程加载通过网络控制实现
 - 增加板上温度电流监测功能
 - 与前端电缆接口不变
 - 不使用VME背板进行数据传输,仅使用VME电源
 - Hit信息依旧通过VME背板传输给MTF插件
- (ii)小白兔交换机(WR Switch)
 - 每个9UVME机箱配置一台,将各插件接口汇总后,通过冗余光纤连接到mTCA机箱中的两个mWR插件上
 - 直接购买,不用重新设计
- (iii)9U VME机箱控制
 - 采用机箱提供的网络协议,从机箱网口电连到对应的小白兔交换机
 - 整体主漂电子学慢控系统通过网络接收信息,无需额外硬件设计
- (iv) 小白兔控制插件(MWR)
 - 每个MWR插件可以连接8个小白兔交换机, 冗余配置
 - 通过背板与后插板(MBI)连接,继而连接DAQ网络
 - 通过背板与MTI插件传输数据,获得快控制信息,并将前端的快状态信息传输给MTI插件,继而传输给触发系统
 - 通过背板将数据传输到主漂电子学监测插件(MEM),尝试进行智能化实时状态监测
- (v) MTI插件:基于MWR母板,设计接口子板,实现与触发系统的连接
- (vi) MEM插件:实验进行电子学系统的实时自动监测
- (vii) mTCA机箱控制: mTCA机箱可以直接连接到网络
- (viii) 可能的改进: 小白兔网络通过无线实现

初步计划

- 时间安排
 - 2021年方案设计
 - 2022年硬件设计
 - 2023年小系统测试,整体生产
 - 2024年安装
- 人员安排
- 风险

需进一步讨论!

MUC电子学升级改造

- •解决读出链或者模块丢失问题,尤其是top-up模式下的模块频繁丢失问题
- 解决备件问题
- 方案需进一步讨论
 - 前端电子学+读出部分,逐步更换或一次性更换
 - 保留trigger接口
 - DAQ接口不变或者网络读出

超导磁体失超及慢放电汇总

- 超导磁铁提供1 T轴向磁 场,工作电流3369 A
- 超导磁体总体运行平稳, 近几年部分器件出现老化 现象,暂未影响运行。
- 2011~2020年,失超次数 共29次,慢放电5次;
- 失超原因:

• 电网波动: 3次

• 空调故障: **1**次

低温系统故障: 16

• 真空系统故障: 1次

• SCQ失超: 1次

• 失超探测器: 1次

• 原因不能确定: 5次

	时间 失超原因		时间	慢放电原因
1	2011/1/13 低温制冷机		2013/3/18	低温系统
2	2011/1/17低温系统		2016/2/29	SCQ失超
3	2011/5/26低温系统		2016/4/28	电网波动
4	2011/6/1低温制冷机		2016/4/29	失超探测器受干扰
5	2012/1/29低温制冷机		2016/4/30	失超探测器电流引线部分受干扰
ϵ	2012/2/3低温制冷机			
7	2012/2/14原因不明			
8	2012/3/24 电网故障低温制	冷机		
g	2012/11/15 电网波动			
10	2013/2/10低温系统			
11	2014/3/12低温控制系统-	空开断开		
12	2014/5/26原因不明			
13	2015/2/20低温系统			
14	2015/5/18中控网络导致低	E温 故障		
15	2015/6/17低温系统			
16	2016/2/13低温系统			
17	2016/11/29 失超探测器电流	辽引线部分受干扰		
18	2017/4/13 电网波动			
19	2017/5/13SCQ失超			
20	2017/11/28低温系统			
21	2018/3/5低温系统			
22	2018/3/24低温系统			
23	2018/5/29低温系统			
24	2020/1/19分子泵故障			
25	2020/4/27低温系统			
26	2020/6/13 电源间空调配电	1系统空开故障		
27	2020/11/15原因待确定			
28	2020/12/3 原因待确定	怀疑过渡段超导电缆	5先失招, 往	寺确定。
29	2020/12/29原因待确定,		0,0,0,0,1	, , , , , , , , , , , , , , , , , , ,

BESIII超导磁体阀箱备件研制

- 阀箱内的真空度从2.2×10⁻²Pa 持续爬升达到 3.8×10⁻²Pa
- 过渡段温度近年逐年升高
- 原因是阀箱内的漏点变大,判断漏点来自于低温管路上的低温绝缘子或者双金属接头处; 历经多次冷热循环、老化,热传导性能下降

- 维改经费支持,完成阀箱备件的研制。
- **阀箱离线测试结果:** 临时硅胶密封,灌入低温 液体,低温下真空度小于 10⁻⁴Pa,电流引线载 流能力达到4000A,过渡段超导电缆运行温度 最高点为6.6K。
- 离线测试结果达到设计指标并通过院里验收(2020.12)。

BESIII超导磁体目前问题及计划

- 超导磁体电源: 电源已经长年运行15年, 部分零部件出现 老化和磨损, 正在研制备用电源。
- 阀箱备件更换预案:包括外部场地准备,结构拆装顺序及工装准备,电缆及管路更换准备,待完成。
- 失超探测器: 无电流时容易受干扰,没有硬件备件,拟更换成基于PLC的失超探测电路,待完成。
- 信号采集系统的更换:原来的采集板出现不同程度的故障,拟采购商用的记录仪进行更换,部分更换。

关键技术R&D

- MDC 内室: 硅像素探测器
 - 研发工程级的芯片及ladder,研发stitching CMOS芯片
- TOF
 - LGAD(Low Gain Amplifying Diode)硅超快传感器方案,期望本征分辨30 ps左右
- dN/dx测量高速电流前放
 - dN/dx算法提高PID能力,设计基于ASIC的高速电流前放,并 在前端实现数字化测量和初级数据处理

总结

- BESIII高性能运行了13年,运行中解决了噪声、本底等问题,未来需要继续关注并研究噪声和本低问题,尤其是BEPCII升级的本底研究
- 子探测器出现了不同程度的老化,老化研究结果表明,漂移室外室,TOF, EMC 和MUC目前的老化没有明显影响探测器性能
- 部分电子学元器件购买超过16年,未来10年的运行有一定的不确定性及风险,同时还存在部分芯片停产的情况。备件的增加和更新,以及替代方案正在考虑和准备
- 漂移室内室、电子学、MUC电子学,超导磁体阀箱、电源、失超探测器和信号采集系统等需要升级或更新,正在准备或者讨论方案和风险评估

子系统	升级	关键技术R&D	
漂移室内室	CGEM	硅像素	新内室备件
漂移室电子学	$\sqrt{}$		
MUC电子学	$\sqrt{}$		
超导磁体阀箱、电源、失 超探测器和信号采集系统	$\sqrt{}$		
TOF		LGAD	

谢!

BESIII 漂移室

- MDC位于BESIII的最内层
- 测量带电粒子的径迹和动量,测量电离能损dE/dx,提供粒子鉴别能力

- 包括内室(8层)和外室(35层)两部分
- 内半径63mm, 外半径810mm, 有效长度2308m
- 内筒: 1.2mm carbon fiber, 外筒: 11.5 mm CF with 8 windows
- 端面板: 18 mm Al (6 个台阶和内室: 25 mm Al)

- 19 个直丝层, 24 个斜丝层
- 6796个信号丝单元, 21884根场
- 内室单元: 12mm×12mm,
- 外室单元: 16.2mm×16.2mm

Inner chamber

TOF

- 测量粒子飞行时间,用于粒子鉴别
- 桶部TOF + 端盖TOF(2)
- 桶部: BC408 scintillator, 2 layers, 176 modules, readout from two ends, Hamamatsu R5924 PMT
- 端盖(旧): BC404 Scintillator, 48 modules for each endcap
- 2015年夏天完成端盖TOF升级,采用MRPC, 2016年6月底工 艺测试验收
 - Two layers in each endcap, the thickness of one layer is less than 25mm
 - 36 modules for each endcap, and 72 modules in total
 - 12 strips in each modules, read out from two ends

EMC

- 精确测量γ和电子的能量和位置
- 桶部+2端盖
- CsI(Tl) crystal + PD readout (Hamamatsu S2744-08)
- 5280 (桶部)+960 (端盖) = 6240 晶体单元
- Crystals suspended without supporting wall

MUC

- 测量反应末态中的µ子的位置和大致飞行轨迹
- 桶部 (9 layers)+ 2 个端盖 (8 layers), μ探测器和强子吸收体
- 基于阻性板 (RPC) 探测器, 约2000 m² RPC
- 4cm 宽读出条,约9000 channels
- $\sigma_{r\phi} = 14mm \sim 15mm$, $\sigma_z \sim 17mm$