Building up pentaquark spectrum as hadronic molecules

Bing-Song Zou

Institute of Theoretical Physics, CAS, Beijing & University of Chinese Academy of Sciences

Outline:

- Motivation for pentaquarks
- Pentaquark spectrum as hadronic molecules
- Pentaquarks at BEPC3 or super tau-charm

1. Motivation for pentaquarks

A key problem in QCD and hadron structure Unquenching dynamics: gluons $\rightarrow qq$ crucial for quark confinement & hadron structure

For the proton, $\overline{d} - \overline{u} \sim 0.12$, spin crisis, s

\rightarrow ~30% pentaquarks in the proton

 $\begin{array}{l} \mbox{Meson cloud picture: Thomas, Speth, Henley, Meissner, Miller, Weise, Oset, \\ & Brodsky, Ma, ... \\ | \ p > \sim | \ uud > + \ \epsilon_1 \ | \ n \ (\ udd \) \ \pi^+(\ \ \overline{du} \) > \\ & + \ \epsilon_2 \ | \ \Delta^{++}(\ uuu \) \ \pi^-(\ \ \overline{ud} \) > + \ \epsilon' \ | \ \Lambda \ (uds) \ K^+(\ \ \overline{su} \) > ... \end{array}$

Penta-quark picture : Riska, Zou, Zhu, ... $|p > \sim |uud > + \varepsilon_1 | [ud][ud] \overline{d} > + \varepsilon' | [ud][us] \overline{s} > + ...$

Nature of 1/2⁻ baryon nonet with strangeness

• Mass pattern : quenched or unquenched ?

uds (L=1) $1/2^{-} \sim \Lambda^{*}(1670) \sim [us][ds] \bar{s} \quad \bar{K}\Xi - \eta\Lambda$ uud (L=1) $1/2^{-} \sim N^{*}(1535) \sim [ud][us] \bar{s} \quad \bar{K}\Sigma - \bar{K}\Lambda - \eta N$ uds (L=1) $1/2^{-} \sim \Lambda^{*}(1405) \sim [ud][su] \bar{u} \quad \bar{K}N - \pi\Sigma$ uus (L=1) $1/2^{-} \sim \Sigma^{*}(1390) \sim [us][ud] \bar{d} \quad \bar{K}N - \pi\Sigma - \pi\Lambda$ Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) : PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda) / p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng,Oset,Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

• Strange decays of $\Lambda^*(1670)$: PDG \rightarrow large $g_{\Lambda^*\Lambda\eta}$ narrower width (35MeV) than $\Lambda^*(1405)$

Difficulties to pin down pentaquarks

Fate of the first pentaquark predicted and observed:

- **1959:** KN molecule predicted by Dalitz-Tuan, PRL2, 425
- **1961:** $\Lambda(1405) \rightarrow \Sigma \pi$ observed by Alston et al., PRL6, 698
- **1964:** Quark model (uds) for $\Lambda(1405)$
- **1995:** KN dynamically generated -- Kaiser et al., NPA954, 325
- **2001:** 2 pole structure by \overline{KN} - $\Sigma\pi$ -- Oller et al., PLB500, 263

PDG2010: "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ —true 3-quark state or mere KN threshold effect? unambiguously in favor of the first interpretation."

New direction for hunting for pentaquarks:

"Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV", Wu, Molina, Oset, Zou, PRL105 (2010) 232001

		(I, S)	М	Г	Γ_i							
		(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$		
N* -	DΣ		4261	56.9	3.8	8.1	3.9	17.0		23.4		
	_ `	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	$K\Xi$	$\eta_c \Lambda$		
۸ *	DE.		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8		
11			4394	43.3	0	10.6	7.1	3.3	5.8	16.3		
	DE	С										

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \to PB$, with units in MeV.

	-	(I, S)	M	Г		Γ_i					-	
		(1/2, 0)			ρN	ωN	$K^*\Sigma$			$J/\psi N$	-	
N*-	D*Σ	C	4412	47.3	3.2	10.4	13.7			19.2		
	=	(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi \Lambda$	1/2-,	3/2-
A *	D* Ξ	С	4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4		
$\Lambda^{}$		Ŭ	4544	36.6	0	8.8	9.1	0	5.0	13.8		

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

Further studies support such hidden charm N*

W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203: Chiral quark model $\rightarrow D\Sigma_c$ state ~ 4.31 GeV

Z.C.Yang, Z.F.Sun, J.He, X.Liu, S.L.Zhu, Chin. Phys. C36 (2012) 6 Schoedinger Equation method with π , η , ρ , ω , σ exchanges $\rightarrow \overline{D} \Sigma_c (1/2^-, 3/2^-) N^*$ state ~ 4.36 – 4.46 GeV

J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002: **EBAC-DCC model** $\rightarrow \overline{D}\Sigma_{c} (1/2^{-}) \sim 4.3 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c} (1/2^{-}, 3/2^{-}) \sim 4.4 - 4.5 \text{ GeV}$ -

C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012: Heavy quark spin symmetry \rightarrow 7 such N* molecules $\overline{D}\Sigma_{c} (1/2^{-}) \sim 4.26 \text{ GeV}, \ \overline{D}\Sigma_{c}^{*} (3/2^{-}) \sim 4.33 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c} (1/2^{-}, 3/2^{-}) \sim 4.41, 4.42 \text{ GeV},$ $\overline{D}^{*}\Sigma_{c}^{*} (1/2^{-}, 3/2^{-}, 5/2^{-}) \sim 4.48 - 4.49 \text{ GeV}$

M.Karliner, J.L.Rosner, PRL115(2015)122001: **Pion exchange** $\rightarrow \overline{D}^*\Sigma_c (1/2^-, 3/2^-) \sim 4.5 \text{ GeV}$ LHCb, PRL122 (2019) 222001

Sci. Bull. (2021) arXiv:2012.10380

Consistent with expectation for hadronic molecules within theoretical uncertainties

LHCb discoveries – historical achievement for pentaquarks ! very important for understanding whole baryon spectroscopy

Theories after LHCb observation of P_c & P_{cs} states

Thresholds $\overline{D}\Sigma_c^*$ (4383MeV), $\overline{D}^*\Sigma_c$ (4460MeV), $p\chi_{c1}$ (4449MeV)

1) $\overline{\mathbf{D}}\Sigma_{\mathbf{c}}^{*}$, $\overline{\mathbf{D}}^{*}\Sigma_{\mathbf{c}}$, $\overline{\mathbf{D}}^{*}\Sigma_{\mathbf{c}}^{*}$ molecular states

R.Chen, X.Liu, X.Q.Li, S.L.Zhu, PRL115 (2015) 132002; L.Roca, J.Nieves, E.Oset, PRD92 (2015) 094003; J.He, PLB 753 (2016)547;

2) diquark cu & triquark c(ud) states

L.Maiani, A.D.Polosa, V. Riquer, PLB749 (2015) 289; R.Lebed, PLB749 (2015) 454; G.N.Li, M.He, X.G.He, JHEP 1512 (2015) 128; R.Zhu, C.F.Qiao, PLB756 (2016) 259;

3) Kinematic triangle-singularity

F.K.Guo, Ulf-G.Meißner, W.Wang, Z.Yang, PRD92 (2015) 071502 J/X.H.Liu, Q.Wang, Q.Zhao, PLB757 (2016) 231 χ_{cJ}

For comprehensive reviews, cf.:

H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Phys.Rept. 639 (2016) 1 F.K.Guo, C.Hanhart, U.Meissner, Q.Wang, Q.Zhao, B.S.Zou, RMP 90 (2018)015004 Y.R.Liu, H.X.Chen, W.Chen, X.Liu, S.L.Zhu, Prog.Part.Nucl.Phys. 107 (2019) 237

2. Pentaquark spectrum as hadronic molecules

1) P_c & P_{cs} spectrum

X.K.Dong, F.K.Guo, B.S.Zou, Progr. Phys. 41 (2021) 65; PRL126 (2021) 152001

Predictions from molecular picture:

 $\overline{D}\Sigma_{c}, \ \overline{D}\Sigma_{c}^{*}, \ \overline{D}^{*}\Sigma_{c}, \ \overline{D}^{*}\Sigma_{c}^{*} \rightarrow 7 \text{ bound states}$

M.Z.Liu et al., PRL122 (2019) 242001; M.L.Du et al., PRL124 (2020) 072001

 $\overline{D}\Xi_{c}$ (4337MeV), $\overline{D}*\Xi_{c}$ (4478MeV), $\overline{D}\Xi_{c}'$ (4444MeV), $\overline{D}*\Xi_{c}'$ (4585MeV), $\overline{D}\Xi_{c}^{*}$ (4513MeV), $\overline{D}*\Xi_{c}^{*}$ (4654MeV) \rightarrow 10 bund states

Predictions to be checked !

2) $D^{(*)}N$ molecular Λ_c pentaquark spectrum

$$\pi \pi - \overline{K}K(I=0)$$

$$\sigma - f_{0}(980)$$

$$M_{\pi} + M_{\Sigma c} = 2590 \text{ MeV}$$

$$M_{D} + M_{N} = 2803 \text{ MeV}$$
Similarity
$$\pi \Sigma - \overline{K}N(I=0) \text{ vs } \pi \Sigma_{c} - DN(I=0)$$

$$\Lambda(1380) - \Lambda(1405) \qquad \Lambda_{c}(2595) - \Lambda_{c}(2765) 1/2^{-}?$$

D*N molecule : Λ_c (2940) 3/2⁻ & 1/2⁻ ? $M_{D*}+M_N=2945$ MeV

 $\overline{K}\Sigma_c \sim \Xi_c (2930) 1/2^-, \ \overline{K}\Sigma_c^* \sim \Xi_c (3015) 3/2^-,$ $D\Sigma \sim \Xi_c (3020) 1/2^-, \ D\Sigma^* \sim \Xi_c (3190) 3/2^-, \ D^*\Sigma \sim \Xi_c (3200), ...$

3) $\overline{\mathbf{K}^{(*)}} \Xi^{(*)}$ molecular Ω^* pentaquark spectrum

Ω*(sss) predicted by K.T.Chao, Isgur, Karl, PRD38 (1981) 155 Ω^* predicted from $\mathbf{K}^{(*)} \Xi^{(*)}$ molecules

4) Strange partners of P_c and P_{cs} states

ΚΣ* ~1880 N*(1875)

N*(2080)

 $K*\Sigma \sim 2086$ $K*\Sigma* \sim 2280$ N*(2270)

KE ~1810 KE* ~ 2027 K*E ~ 2210 K***E*** ~ 2427 $\Lambda(1/2^{-})$ $\Lambda(3/2^{-})$ $\Lambda(1/2^{-},3/2^{-})$ $\Lambda(1/2^{-},3/2^{-},5/2^{-})$

K*N ~1833 : $\Lambda(1800)1/2^{-}, \Lambda(3/2^{-})$

3. Pentaquarks at BEPC3 or super tau-charm

BEPC3: for $E_{cm} \sim 5.0-5.6 \text{ GeV}$, $\mathcal{L} \sim 5*10^{32}/\text{cm}^2/\text{s}$, $\sim 5/\text{fb/year}$ For $e^+e^- \rightarrow \overline{\Lambda}_c \Lambda_c^* \rightarrow \overline{\Lambda}_c \Sigma_c \pi$, $\overline{\Lambda}_c Dp$, $\overline{\Lambda}_c \Lambda_c \pi \pi$, $\sigma \sim 100 \text{ pb}$, capable to pin down J^p of Λ_c (2765) and search for Λ_c (2940) 1/2⁻

For $e^+e^- \rightarrow \overline{\Lambda}_c \Lambda_c^{(*)} + cc \rightarrow \overline{p}P_c + cc \rightarrow \overline{\Lambda}_c pD^{(*)} + cc$, $\sigma \sim 100 \text{ fb}$, very difficult to study P_c states at BEPC3

Possible to look for various pentaquarks with strangeness

Strangeness partners of P_c states at BES ?N*(1875)N*(2080)N*(2270)K Σ * ~1880K* Σ ~ 2086K* Σ * ~ 2280

Conclusion

- Difficult to study Pc states at BEPC3
- Capable to study charm and strange pentaquarks

Benchmarking channels: $e^+e^- \rightarrow \overline{\Lambda}_c p D^{(*)} + c.c.$ $e^+e^- \rightarrow \overline{\Omega} \Xi^- K_s + c.c.$

Thank you for your attention!