

中国高能物理非加速器战略研讨会

稀有事例探测实验的 低温低本底电子学

封常青

核探测与核电子学国家重点实验室 中国科学技术大学近代物理系

2021-05-16 北京

- •研究背景
- •低温电子学介绍
- ·PandaX-III低本底电子学介绍
- •总结

非加速器粒子物理的稀有事例探测实验

■ 共同特点:目标事例特别稀有(甚至至今仍未测到)
 □ 质子衰变:预期半衰期达10³³年以上
 □ 无中微子双β衰变:预期半衰期达10²⁶年以上
 □ 中微子探测实验:目标事例率很低(或极低)

稀有事例探测

举例: 典型的暗物质直接探测实验

• 气液两相氙探测器方案(165.04K)

- PandaX-I、PandaX-II
- PandaX-4T
- 高纯锗探测器方案
 - CDEX (液氮致冷,77K)
- 液氩/气液两相氩探测器方案<mark>(87K)</mark>
 - DarkSide
- •液氦探测器方案(4K)
 - ・国内相关单位正在酝酿(原子能院等)

举例: 典型的无中微子双贝塔衰变实验

- •液氙探测器方案(165.04K)
 - EXO-200
 - NEXT实验
- CdTe/CdZnTe探测器方案
 - COBRA实验
- 传统漂移室+塑闪探测器方案
 - NEMO3
- 高纯锗探测器方案
 - GERDA (液氩致冷,87K)
- Bolometer探测器方案
 - CUORE实验(mK~K)
- 高压气氙探测器方案
 - PandaX-III实验

实验的关键问题

■大量的探测器介质(靶材) ■足够长的实验(曝光)时间 ■强大的事例鉴别能力 □高能量测量、径迹测量、获取多维度信息 □实现目标事例与背景事例的有效区分 ■超低本底的运行环境

□ 极低的宇宙线辐射环境(地下实验室)

- □ 良好的屏蔽(及反符合)装置
- □ 实验材料(包括读出电子学)的低放射性本底

对于很大一部分实验,核心探测器都工作在低温或超低温条件下。

举例双β衰变和无中微子双β衰变 总电子能谱示意图

6

- •研究背景
- •低温电子学介绍
- ·PandaX-III低本底电子学介绍
- •总结

常温电子学与低温电子学

常温电子学(Warm Electronics)

- 优点:
 - 电子学技术成熟
 - 本底易于控制
- 缺点
 - 信号引线长,信噪比降低
 - 低温-常温的电连接数量多,系统设计复杂

低温电子学(Cryogenic Electronics)

- 优点:
 - 前端电路与探测器紧耦合, 信噪比高
 - 系统结构设计简单,易于温控
- 缺点
 - 需要考虑前端电子学对制冷系统的影响
 - 电子学放射性本底控制难度大

Ref.: Shanshan Gao, Cryogenic Readout Electronics Systems for Liquid Argon TPCs in Neutrino Experiments, CERN EP-ESE Electronics Seminars, 2020-9-15

低温电子学的关键

• 低温下器件参数发生变化(甚至退化)

□电容器容值变化

□ 半导体器件参数变化

• 低温对器件长期可靠性(寿命)的影响

口机械应力效应

□ 热载流子效应(HCE)

• 其它:

□ 电气连接问题

□ 散热/传热考虑

温度对半导体器件性能的影响

对CMOS器件: 温度降低,载流子迁移率增加,热涨落更小,器件速度更快,噪声更低

Ref.: Shanshan Gao, Cryogenic Readout Electronics Systems for Liquid Argon TPCs in Neutrino Experiments, CERN EP-ESE Electronics Seminars, 2020-9-15

热载流子效应(HCE)

Fig. 1. Schematic representation of impact ionization by hot electrons in the channel of an NMOS device. The holes produced by impact ionization constitute the substrate current.

Ref.: IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 6, DECEMBER 2013 4737

低温器件的寿命加速试验设计

低温器件筛选(举例)

Cold FPGA

Vendor	Family	Technology	Speed of GTX [Gbps]	# of GTX	Memory [Mbit]	Core Voltage [V]	Status
ALTERA	Arria GX	90nm	3.125	4 - 12	1.2 - 4.5	1.2	Tested by BNL
ALTERA	Arria II	40nm	6.375	8 - 24	2.9 - 16.4	0.9	Tested by BNL
ALTERA	Stratix II GX	90nm	6.375	4 - 20	1.4 - 6.7	1.2	Tested by SMU
ALTERA	Cyclone IV E	60nm	N/A	N/A	0.3 - 3.9	1.0, 1.2	Tested by BNL
ALTERA	Cyclone IV GX	60nm	3.125	2 - 8	0.5 - 6.5	1.2	Tested by BNL
ALTERA	Cyclone V GX	28nm	3.125	4 - 12	1.2 - 12.2	1.1	Tested by BNL
XILINX	Virtex 5	65nm	6.5	0 - 24	0.9 - 18.6	1.0	Tested by BNL

Ref.: Shanshan Gao, Cryogenic Readout Electronics Systems for Liquid Argon TPCs in Neutrino Experiments, CERN EP-ESE Electronics Seminars, 2020-9-15

Cold Regulator

Vendor	Part Number	Iout	Vout	Vin	Note
ADI	ADP1708	1A	0.8V to 5.0V	2.5V to 5.5V	
ADI	ADP1741	2A	0.75V to 3V	1.6V to 3.6V	
ADI	ADP124ACPZ-1.8	500mA	1.8V	2.3V to 5.5V	
ADI	ADP130AUJZ-1.8	350mA	1.8V	2.3V to 3.6V	
ADI	ADP170AUJZ-1.8	300mA	1.8V	2.0V to 3.6V	
Globaltech	GS2915L18F	150mA	1.8V	2.3V to 6.0V	
Intersil	ISL9021	250mA	0.9V to 3.3V	1.5V to 5.5V	
Intersil	ISL80113	3A	0.8V to 3.3V	1V to 3.6V	
Linear	LTC3026	1.5A	0.4V to 2.6V	1.14V to 5.5V	
Linear	LTM4616	16A	0.6V to 5V	2.7V to 5.5V	POL Converter
Linear	LTM4619	8A	0.8V to 5V	4.5V to 26.5V	POL Converter
Maxim	MAX8517	1A	0.5V to 3.4V	1.425V to 3.6V	
National	LP38502TJ-ADJ	1.5A	0.6V to 5V	2.7V to 5.5V	
TI	TPS73701	1A	1.2V to 5V	2.2V to 5.5V	
TI	TPS78601	1.5A	1.2V to 5.5V	2.7V to 5.5V	
TI	TPS78618	1.5A	1.8V	2.7V to 5.5V	
TI	TPS78625	1.5A	2.5V	3.0V to 5.5V	
TI	TPS74201	1.5A	0.8V to 3.6V	0.9V to 5.5V	

- Cryogenic test of commercial voltage regulators that could be used to power LAr TPC cold electronics
- Stable and low-noise regulation, low dropout (low power) are critical
 H. Chen Topical Workshop on Electronics
 Brookhaven Science Associates
 09/13/2017
 for Particle Physics
 54

Ref.: Shanshan Gao, Cryogenic Readout Electronics Systems for Liquid Argon TPCs in Neutrino Experiments, CERN EP-ESE Electronics Seminars, 2020-9-15 14

典型案例: GERDA实验

- 位于意大利Gran Sasso(LNGS)地下实验室
- 采用Ge探测器
 - ⁷⁶Ge提纯到86%(Q=2039keV)
 - 采用液氩致冷(87K)同时可起到屏蔽作用

▶前放输出通过20米电缆到FADC ▶利用商业AD采集卡 ▶100MSPS, 14bit >从各子探测器获取的数据采用 GPS信号同步

GERDA Ge探测器前端电路原理框图

▶PCB板材采用Cuflon(PTFE+Cu)
 而不是FR4
 ▶元器件选型经过特殊考虑,以
 降低放射性

Ref.: The GERDA experiment for the search of 0vββ decay in 76Ge, Eur. Phys. J. C (2013) 73:2330

典型案例: DarkSide实验

- 双相液氩TPC探测器,有效质量(fiducial mass)23吨
 - \square -> WIMP-nucleon cross sections of 7.4x10⁻⁴⁸cm² @1TeV/c²
- 计划2022年安装到意大利Gran Sasso实验室(Hall C)

Ref.: Seminar of High Energy Physics, Faculty of Physics and Applied Computer Science AGH, 24.11.2017, Cracow Ref.: arXiv:1707.08145v1 [physics.ins-det] 25 Jul 2017 17

DarkSide-50的读出电子学

DarkSide-20k: SiPM的低温读出

典型案例: DUNE实验

DUNE: The Deep Underground Neutrino Experiment

典型案例: nEXO实验

- 5000kg级的液氙TPC探测器
 - □ 希望将无中微子双贝塔衰变寿命下限推进到**10²⁸年**
 - □ ~4 m² SiPM 阵列(178nm 光读出)

nEXO SiPM读出

Prototype SiPM Tile (Stanford)

Conceptual design of the photo detector system underway

BNL nEXO组承担了SiPM测试、低温读出ASIC设计、以及SiPM tile设计组装 (SiPM低温电子学技术路线及关键器件与DUNE电子学相通)

nEXO 电荷读出(高能所李怀申提供)

V2.0 ASIC

Performance	Test results		
Peaking time	2μs / 4μs		
Sampling freq.	66MHz		
ENC	265e ⁻ @160K		
INL	0.4%		
Linear range	0.3fC~64fC		
Signal rate	1kHz		
Power consumption	3mA@1.8V per channel		

- 2 powers: 1.8V/3.3V
- Decoupling capacitors are needed

V2.1 ASIC

- ENC simulation results:
 - Better than 200e-@273K (0°C)
- No filter cap. for the ENC
- 1.8V for analog/digital parts
- Improve the drive capability for 5 meters cable

- 4.5mm x 2.8mm
- Tape-out: 2020.3

最新进展: SiPM的超低温应用 (ETH、PSI)

Ref.: Ryoto Iwai, et al., Characterization of Cryogenic SiPM Down to 6.5 K, Proceedings of the 5th International Workshop on New Photon-Detectors (PD18), 2019

- •研究背景
- •低温电子学介绍
- ·PandaX-III低本底电子学介绍
- •总结

低本底电子学(PandaX-III实验举例)

- PandaX-III: 无中微子双贝塔衰变实验
 - 上海交大牵头
 - 中科大作为参与单位,承担其低本底电子学、及核心Micromegas探测器模块 研制任务
- 实验方案: 高压氙气时间投影室(TPC)
 - 采用微结构气体探测器:实现双贝塔射线<mark>能谱+精细径迹测</mark>
 - 电子学: 实现6000路气体探测器信号的读出
- 读出电子学面临的挑战
 - 通道密集 => 高集成度
 - 高能量分辨 => 低噪声
 - 长年稳定运行 => 高可靠
 - 极低的低放射性本底

挑战: 放射性本底的控制

工程研制面临的最大挑战:放射性本底的控制 国内外尚无复杂的读出电子学系统低本底设计的经验可供参照

低本底电子学的探索

- 实验结果表明,原型电子学模块的**放射性超过设计指标10倍**
 - 实测10Bq,目标为1Bq以下
 - PCB材料是放射性控制的瓶颈(~80%)
 - 对多种牌号的PCB材料进行了调研和筛选测试,未有显著改进

目前工业上常规的多层PCB工艺难以避免矿物材料,无法解决根本问题

解决方案:基于多层柔性粘接工艺的低本底PCB

◆ 创新: 多层柔性粘接的PCB工艺改进方案

将多片聚酰亚胺柔性基材直接粘胶构成多层软板,避免玻璃纤维和固化剂等
 开展信号完整性优化设计,减少电子学模块的层数以适应新工艺极限
 在保证阻抗控制、信号回流和电磁屏蔽的前提下,将12层PCB减少到8层
 由PCB工厂多次试产,成功制成新型8层电路模块,实测PCB放射性降低百倍

也可为国内其他同类实验提供借鉴

低本底前端电子学模块

- 通过使用软板基材(聚酰亚胺),将放射性大幅降低
- 放射性测试结果已基本达到指标要求(从10Bq降到了~1Bq)
- 最大的放射性来源已解决,还进一步降低陶瓷电容和连接器的本底

FEC V4聚酰亚胺基材

版本号	放射性水平 (mBq)
FEC V2	10550
FEC V4	990

FEC V4放射性(均焊接器件, 最大值,置信度90%)

低本底陶瓷电容探索

FEC V5设计中大量改用低本底电容

基于低本底陶瓷电容的电子学设计

• FEC V5中将约半数陶瓷电容删 减或替换为低本底电容

使FEC V5可在FEC V4的基础上再降低约30%放射性

低本底连接器的探索

- 采用新PCB工艺及低本底电容后,电路模块整体的放射性已基本达到指标 PCB基板对放射性的贡献已达到可忽略的程度
- 连接器的放射性成为一个重要因素
- 对多种连接器的放射性进行了对比测试

● 试验发现一款连接器放射性水平远好于其它型号 ● 但该连接器原本设计用于线缆连接,无法焊到PCB板上

低本底连接器进展

◆ 利用定做的图纸,协调多个连接器厂家并行试制新低本底连接器,

□ 成功获得两个不同厂家试制的低本底连接器□ 部分用于放射性测试,部分用于焊接调试

- ◆ 测试时间: 2020年12月12-18日
- ◆ 测试地点: 锦屏地下实验室伽马检测站

测试结果表明:该定制连接器仍保持很低的放射性水准 即将应用于PandaX-III电子学工程复制

总结

- ■与加速器粒子物理实验相比,暗物质探测、无中微子双β衰变等地下稀有 事例探测实验的电子学在低温、低本底方向面临着特殊的挑战
 - □随着实验规模扩大,前端电子学与探测器的紧密集成(导致电子学的数字化和高速数据传输前移)已成大势所趋,给电子学系统的低温适应性和可靠性、以及工程上的本底控制带来更大的困难
- ■目前国外已有低温电子学的初步成果,但在复杂电子学系统的低本底控制 方面并没有成熟经验
 - □目前的成果更多的是通过工程探索(如元器件筛选、洁净度控制)实现,并无系 统的方法论或解决措施
- ■基于CMOS工艺的<mark>低温前端读出及数字化ASIC</mark>具有重要的应用价值,国内 还处于起步阶段
- ■超低温(mK至数K)光电探测器(如SiPM)读出可能是未来新的发展方向

·本报告低温电子学的部分内容摘自BNL实验室低温电子学组

高山山的公开会议报告

•感谢高能所李怀申提供的nEX0电子学(ASIC)资料

感谢各位专家!