暗物质粒子探测卫星(DAMPE)和

甚大面积伽马射线空间望远镜(VLAST)

袁 强

中国科学院紫金山天文台

中国高能物理非加速器战略研讨会 北京 2021.5.15

宇宙射线起源和传播

DAMPE卫星

- Altitude: 500 km
- Inclination: 97.4°
- Period: 95 minutes
- Orbit: Sun-synchronous

DAMPE探测器

 PSD:
 电荷测量
 STK:
 径迹、电荷测量

 BGO:
 能量、径迹测量、e-p鉴别
 NUD:
 e-p鉴别

子探测器工作稳定

DAMPE性能

电子-质子鉴别

能量分辨

DAMPE性能

方向测量

DAMPE正负电子能谱测量

质子与氦核能谱测量

▶ 质子和氦核能谱显示出非常类似的变硬+变软的结构

➢ 变软能量近似正比于粒子电荷Z

伽马射线线谱搜寻

暗物质间接探测现状

研究对象		探测现状	不确定性	疑似信号的能区	
正负电子宇宙线		与宇宙线模型预言比有超出	大	TeV	
反质子宇宙线		AMS-02数据中似乎有超出	大	GeV	
伽玛射线	银心	存在重要的GeV超出	大	GeV	
	矮星系	个别近源有微弱的信号	较小	GeV	

暗物质仍有很大可能性落入GeV-TeV波段,大面积伽马射线望远镜具 有重要的发现机遇、发现后也具有精测的必要

天文学已进入全波段、多信使时代

LIGO (2017)

IceCube等 (2018)

伽马射线灵敏度

GeV-TeV能段一个显著超越Fermi的仪器非常必要!

VLAST:灵敏度显著优于Fermi的GeV-TeV伽 马射线空间望远镜

探测设备	工作能段	接受度@10GeV (m ² sr)	能量分辨@50GeV
Fermi-LAT	0.1GeV-0.5TeV	2	6.5%
DAMPE	2GeV-10TeV	0.2	1.5%
HERD(在研)	5GeV-20TeV	~2	2.0%
VLAST	0.3GeV-20TeV	~10	1.5%

VLAST探测器初步结构图 (2*2阵列、每单元1.2m*1.2m、 总重约13吨)

VLAST: 技术挑战和创新

指标项	DAMPE	VLAST (预期)	跨越度
伽马探测效率@1GeV	5%	60%	约12倍
探测单元动态范围	200,000	1,000,000	约5倍
探测器单元通道数	75,908	1,500,000	约20倍
原始触发率	100Hz (>5GeV)	20kHz (>0.3GeV)	约200倍

技术创新:

▶ 超大面积的高位置分辨径迹探测器(总约280 m²)
 ▶ 高效的在轨数据压缩和触发判选(>100:1)
 ▶ 低串扰、大动态范围的光电探测(动态范围>10⁶)

探测器配置及触发方案研究

≻ 探测器器配置

- 反符合探测器: 20cm*20cm* 1cm块状塑闪
- 径迹探测器: 18大层硅微条, 面积2.8m*2.8m, 1.1辐射长度
- BGO成像型量能器: 5大层, 面积2.4m*2.4m

- 光子触发: 在轨ROI寻找
- 高能电子触发:量能器>5GeV
- 重荷触发: Z>1, 量能器触发
- 能量标定触发: "直穿"探测器的粒子

目标 Target	反符合/电 荷探测	硅径迹 STK	量能器低能 CAL.L	量能器高 能CAL.H	径迹区域 寻找ROI
电子>5GeV	Х	*	*		*
核素	√(电荷)	*	*	\checkmark	*
光子 >200MeV	\checkmark	\checkmark		*	
能量定标 MIPs	Х	*	√(分频)	*	*

- ▶ 硅微条径迹探测器
 - 高精度地探测伽马的方向
- ▶ 技术难点在于兼顾:
 - 大面积(高灵敏度): 模块>400平方厘米
 - 高位置分辨:优于60um

Power supply

- ▶ 前端电子学
 - 将硅微条探测器信号读出
 - 多通道、低噪声
- ▶ 基于多通道的ASIC芯片,完成前端电子学设计,实现了:
 - 384通道/前端FEE板
 - 动态范围: 200fC (3.6fC/MIP)
 - 噪声水平: <0.1fC @0pF输入
 - 实现了流水线数据压缩, 38.4 M通道/s的 数据压缩

前端电子学FEE

硅片检测

 ▶ 宇宙线Moun的MIPs响应, MIPs 的MPV值约在50道
 ▶ 噪声水平在3道, MIPs的信噪比 好于16,

大面积图像量能器读出研究

▶ 成像型量能器

- 能量测量和粒子簇射图像鉴别
- 大动态范围、大面积低死区
- ▶ 技术难点
 - 整个量能器需要覆盖20 TeV, 每个探测单元需要实现2×10⁵ 大动态范围
 - 多通道探测阵列,需要解决大动态范围带来的串扰问题
 - 大面积(高灵敏度)和实现精 细成像之间的平衡

100 GeV质子

BGO晶体30cm->60cm->90cm

大面积图像量能器读出研究

- > 大动态范围光电读出
 - 利用三个不同增益的光电探测通道扩 大动态范围
 - 高增益通道采用具有放大倍数的新型 光电探测器SiPM
 - 中低增益采用不同面积的硅PIN
- ▶ 前端电子学
 - 多通道、低噪声
 - ASIC芯片: IDE3381、VA160、 VATA160
- ▶基于BGO闪烁晶体,完成了整个读 出系统的研制

大面积图像量能器读出研究

MG vs LG Gain

HG vs MG Gain

- ≻利用宇宙线对MIPs响应进行测试
- ▶利用LED模拟高能闪烁光,对高、中低增益进行测试
- ➢ MIPs响应(23 MeV)的信噪比>10, 通过高/中/低三个不同增益的测量通 道,将动态范围扩展到~4×10⁵

MG ADC (Bin)

40

60

120

140

VLAST模拟研究

VLAST科学目标

≻暗物质粒子(WIMP, ALP)间接探测

- 1) 矮星系等区域的暗物质湮灭产生的GeV辐射
- 2) 暗物质湮灭 (类)线谱探测
- 3) 在伽马射线源能谱中搜寻ALP信号
- 4) 在电子宇宙线中搜寻暗物质信号

≻伽马射线时域天文

- 1) 引力波、中微子事件的高能辐射对应体 2) 新的GeV(爆发)源、高红移GeV辐射源
- 3) 测量宇宙的伽马射线视界

