

CUPID-CJPL

锦屏低温晶体量热器无中微子双贝塔衰变实验研究

马龙 (for the CUPID-China collaboration)

复旦大学现代物理研究所

中国高能物理非加速器战略研讨会, 2021.05.15-16, 北京

- 低温晶体量热器无中微子双贝塔衰变实验
- 锦屏低温晶体量热器实验规划 (CUPID-CJPL)
- 研究进展
- 研究计划

低温晶体量热器无中微子双贝塔衰变实验

$$^{A}_{Z}X_{N} \longrightarrow ^{A}_{Z+2}X_{N-2} + 2e^{-1}$$

针对四个基本问题

 中微子的绝对质量大小
 中微子的Majorana属性
 是否存在轻子数破缺过程
 物质-反物质不对称起源

▶ 低温晶体量热器 (Bolometer)

- · 工作在超低温(mK)和超低本底环境下,通过晶体 微量热技术实现稀有物理事件甄别
- · 在同位素双贝塔衰变理论阈值(Q_{ββ})附近寻找0vββ
- 具有高探测效率、高能量分辨和低本底的优势

低温晶体量热器经过几十年的技术发展,成为 当前国际上极具竞争力的0vββ实验方案之一

CUORE实验

意大利CUORE实验—国际最大质量bolometer实验

- 位于意大利Gran Sasso地下实验室 (LNGS)
- 物理目标: 探测¹³⁰Te无中微子双贝塔衰变
- 探测器: 988块TeO2立方晶体 (总质量: 742kg)
- 有效同位素: ¹³⁰Te (Q_{ββ}~2533keV)
- 预期本底水平: 0.01 cts/keV/kg/yr (ROI)

Editors' Suggestion

24 citations

Improved Limit on Neutrinoless Double-Beta Decay in $^{130}\ {\rm Te}$ with CUORE

D. Q. Adams *et al.* (CUORE Collaboration)

New limits have been set on the neutrinoless double beta decay in $^{130}{\rm Te}$ from two years of data from the CUORE experiment. Show Abstract +

CUORE-2020最新结果

 $T_{1/2}^{0\nu} > 3.2 \times 10^{25}$ years (90% C.L) $m_{\beta\beta} < 75 - 350$ meV

Long Ma

CUPID实验技术

新一代低温晶体量热器实验 - CUPID (CUORE Upgrade with Particle Identification)

- 基于CUORE基础,实现反序区间覆盖
- 高Q值核素: Q_{ββ}>2615 keV(²⁰⁸Tlγ),远离自然放射集中区
- 高富集度晶体:Er>95%
- 高能量分辨: Γ₀<10 keV (0.25%,FWHM), 2vββ贡献可忽略
- 光-热双读出本底甄别:区分α、β/γ,α去除效率>99.9%
- 拓展性强/成本可控:可采用多种同位素富集晶体

发展目标: 去除α本底, 压低γ本底, 保持能量分辨

CUPID-Mo量热器单元 (EPJC 80,77)

CUPID合作组

International CUPID collaboration

CUPID-China Collaboration

International Collaboration: CUPID – Italy CUPID – US CUPID – France CUPID – China

发挥锦屏优势,参与国际合作,开展低温晶体量热器0vββ实验研究

锦屏低温晶体量热器实验(CUPID-CJPL)

▶ CUPID-CJPL实验

- 建设国内首个地下低温量热器实验平台
- 高Q值同位素: Q_{ββ} (¹⁰⁰Mo)~ 3034 keV
- ¹⁰⁰Mo富集钼酸盐闪烁晶体
- CUPID技术:光-热双读出本底甄别
- 高能量分辨率: **Γ**(Q_{ββ})<10 keV
- 超低本底: < 0.001ckky

充分发挥国内晶体研发优势,开展低本底高灵敏度0vββ实验测量

目标同位素: 100Mo

Isotope	Q	a	$T_{1/2}^{2\nu}$
	[keV]	[%]	10 ¹⁹ [y]
⁴⁸ Ca	4274	0.2	$4.4^{+0.6}_{-0.5}$
⁷⁶ Ge	2039	7.6	160^{+13}_{-10}
⁸² Se	2996	8.7	9.2 ± 0.7
⁹⁶ Zr	3348	2.8	2.3 ± 0.2
¹⁰⁰ Mo	3034	9.6	0.71 ± 0.04
¹¹⁶ Cd	2814	7.5	2.85 ± 0.15
¹³⁰ Te	2528	34.2	69 ± 13
¹³⁶ Xe	2458	8.9	220 ± 6
¹⁵⁰ Nd	3368	5.6	0.82 ± 0.9

当中微子马约拉纳有效质量 $(m_{\beta\beta})$ 一定的情况下,核 矩阵元 M^{0v} 和两体相空间因子 G^{0v} 的乘积越大 $(JT^{0v}_{1/2} | m_{\beta\beta} |^2$ 越小),理论 $0v\beta$ 衰变速率越大,实验测量的可行性越大。

¹⁰⁰Mo同位素具有显著优势,LMO闪烁晶体拥有制备基础

研发计划

- ▶ 富集晶体制备技术研发
- ▶ 低温低本底技术研发
- ▶ 低噪声电子学系统研发

- ▶ 地面测试
- 晶体样品测试
- 系统减振测试
- ▶ 地下测试
- LNGS实验室地下晶体测试 (国产大尺寸LMO立方晶体)
- 本底分析
- ➤ CUPID-CJPL样机实验
- 建立锦屏低温低本底实验平台
- 建立10 kg样机装置
- 实验取数和数据分析

充分论证CUPID-CJPL关键技术

近年研究进展: 晶体制备

Cylindrical Ф55x100 mm³ LMO ingot

45×45×45 mm³ high purity LMO crystal

- ▶ 高纯度钼酸锂粉末合成技术优化
- ▶ 超纯LMO自然丰度晶体制备:
- 大尺寸圆柱形单晶毛胚生长(Φ55x100 mm³)
- 大尺寸立方晶体制备(45x45x45 mm³)
- ▶ 富集晶体生长加工本底控制技术研发 (杂质含量目标: ²³²Th/²³⁸U <10µBq/kg)</p>
- ▶ 大尺寸立方晶体光学性能测试

近年研究进展: 晶体测试

USTC Testing Ningbo LMO @ CSNSM, Orsay

▶ 地面晶体测试

- 国产自然丰度LMO晶体样品
- 法国Orsay CSNSM地面低温测试装置
- 光-热双读出信号检验:实现alpha信号区分

目前已完成4块自然丰度大尺寸LMO立方晶体制备, 计划近期于意大利LNGS地下实验室开展测试

近年研究进展:读出电子学系统研发

USTC Electronics Design Block Diagram

- 低温量热器数字读出系统和数据获取系 统关键技术研发 (USTC/BNU)
- 晶体量热器单元前端电子学研发(前端 电路板设计)
- JFET 性能测试和评估
- NTD-Ge热敏电阻计研发与测试 (CIAE)
- 计划与意大利米兰大学合作开展CUPID 电子学技术研发

近年研究进展:材料本底检测

• 晶体样品ICP-MS检测

Nome	Со	Ni	Cs	Pt	TI	Pb	Bi	Th	U
Name	ppt (ng/kg)								
LMO crystal	38.7	12.6	358	60.7	0.84	13.8	443	3.34	23.7
powder	1001	130	2710	0.718	188	1.09	1843	6.24	752

• 无氧铜样品检测

▶ 高精度ICP-MS检测

- 宁波大学和中科院硅酸盐所LMO原料样品 检测 (SINAP)
- 无氧铜样品本底检测 (PKU, SINAP)
 灵敏度: U/Th~ 10⁻¹⁴-10⁻¹⁵ g/g
- 优化测量方法,减少样品污染

可开展晶体样品和金属材料快速检测,对于 CUPID材料筛选和本底控制至关重要

近年研究进展:地下低本底铜制备

- ▶ 地下低本底电解铜主要用于探测器阵列和内部屏蔽体,是实现新一代 大型低温晶体量热器实验本底目标的重要途径
- ➤ CUPID-China合作组开展研发,已具备地下低本底测量和地下超纯铜 材制备基础,能够自主设计研制地下超纯铜制备装置(清华大学)

近年研究进展:本底模拟研究

- ➤ CUPID-CJPL样机本底模拟研究
- ✔ 探测器建模和效应实现
- ✓ 本底屏蔽模拟研究
- ✔ 环境放射性本底模拟
- ✔ 宇生放射性本底模拟

L Ma, HZ Huang, JH Chen in preparation for JINST

Long Ma

近年研究进展:地面测试系统建设

- ▶ 低温低本底晶体量热器地面测试装置
- Bluefors XLD400 (FDU)/Oxford Ins (USTC)
- 超低本底无氧铜恒温器,屏蔽体挂载设计
- 低温读出 (MXC->RT), 主动减振装置
- 完成屏蔽体挂载和系统真空度测试
- 通过验收运行,计划开展地面晶体测试

CUPID-CJPL研究计划

轴子和低质量暗物质研究

- ▶ 轴子和暗物质探测
- 太阳轴子 (14.4 keV, 477.6 keV) 探测 a+⁷Li→⁷Li* →⁷Li+γ
- 暗物质粒子探测 低质量靶核: Li/O, 中等质量靶核: Mo
- > 双中微子双贝塔衰变能量谱和半衰期研究
- 检验CPT守恒
- 比较不同同位素结果
- ▶ 中微子相干散射研究

基于CUPID技术的晶体量热器在低能区具 备更低的本底水平,有望在CUORE基础上 实现更高灵敏度的测量

➤ CUPID-CJPL

- 建设锦屏低温低本底实验平台,开展钼基晶体量热器0νββ及 低质量暗物质等前沿物理实验研究
- 参与国际合作,确立锦屏优势,开展大型CUPID实验
 ➤ CUPID-CJPL样机实验
- 充分论证LMO实验技术
- 建立百千克/吨级实验装置研发基础

▶ 国内研发基础

- 高纯晶体生长,低本底检测和读出电子学研发
- 低本底富集晶体生长技术探索

开展CUPID-CJPL技术研发,掌握新一代无中微子双贝塔衰变实验核心技术,确立锦屏优势,主导未来国际领先的CUPID实验

谢谢!

Backups: CUPID-1T experiment

CUPID-1T: HALLMARKS

- 1000 kg of ¹⁰⁰Mo in a new cryostat or multiple facilities world wide
- > Sensitivity: $m_{\beta\beta} < 10 \text{ meV}$ (NH)

POTENTIAL EXPANSIONS

- Large volume cryogenic facilities in multiple Underground Labs worldwide
- ~1900 kg of LMO

Build a large-size CUPID-CJPL detector as a part of CUPID network detectors to achieve ultimate ton-scale sensitivity for Mo-100

Towards CUPID-1T. Snowmass 2021 Planning workshop

Backups: Sensitivity projection

基本参数	CUPID Demon	9-CJPL strator	CUPID-CJPL 200	
晶体材料	Li ₂ MoO ₄	Li ₂ MoO ₄	Li ₂ MoO ₄	
晶体总质量(kg)	10	30	200	
有效同位素富集度	85%	85%	95%	
有效同位素质量(kg)	5	15	106	
能量分辨率(FWHM, keV)	10	10	5	
本底水平(cts/keV/kg/yr)	0.001	0.001	0.0001	
半衰期灵敏度(5yr, yr)	3.5×10^{25}	6.0×10^{25}	9x10 ²⁶	
有效质量灵敏度(5yr, meV)	70-130	41-75	12-22	
预算估计(人民币百万元)	20	50	200	

CUPID-CJPL不同规模实验半衰期和有效马约拉纳质量测量灵敏度预测

Long Ma

Backups: Resolution comparison

¹⁰⁰Mo低温晶体量热器能量分辨率高, $2v\beta\beta$ 能谱末端在 $2v\beta\beta$ 敏感区间贡献小

Long Ma