中国高能物理非加速器战略研讨会

中微子核相干散射和探测器技术发展

杨长根 2021.05.15

报告内容

• 中微子特性的测量 ✓ 大亚湾中微子实验(振荡参数) ✓ 江门中微子实验(振荡参数,中微子质量) ✓ 中微子核相干散射(继续中微子特性的测量) • 台山中微子核相干散射实验 • 反应堆中微子监测及探测技术

江门中微子实验

- 设计、研制、建设并运行一个国际领先的中微子研究中心,以测定中微子质量顺序(> 3σ)、精确测量中微子 混合参数(< 1%),研究超新星、地球及太阳中微子
- ~2030年将JUNO改造为国际最大的双beta衰变实验 以测量中微子绝对质量、判断其是否是马约拉纳粒子, 即是否是其自身的反粒子等

• 设计科学寿命~30年

中微子-核子相干散射成为热点

EurekAlert! The Global Source for Science News			MAA	AS		
HOME	NEWS	MULTIMEDIA	MEETINGS	PORTALS	ABOUT	
PUBLIC	DELEASE: 3-AL	IG-2017				

World's smallest neutrino detector finds big physics fingerprint

DOE/OAK RIDGE NATIONAL LABORATORY

f 🔰 🕠 🎯	SHARE
---------	-------

🖨 PRINT 🛛 🔄 E-MAIL

OAK RIDGE, Tenn., Aug. 3, 2017--After more than a year of operation at the Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL), the COHERENT experiment, using the world's smallest neutrino detector, has found a big fingerprint of the elusive, electrically neutral particles that interact only weakly with matter.

The research, performed at ORNL's Spallation Neutron Source (SNS) and

Science MAAAS

Home	News	Journals	Торі	cs Career	S
Science	Science Advanc	es Science Imn	nunology	Science Robotics	Science Signalii

SHARE REPORT

Observation of coherent elastic

neutrino-nucleus scattering

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. ... + See all authors and affiliations

Science 03 Aug 2017: eaao0990 DOI: 10.1126/science.aao0990

Article

Figures & Data Info

Info & Metrics eLetters

🔁 PDF

Peer Reviewed

Coherent v-Nucleus Scattering

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should have a sharp coherent forward peak just as $e + A \rightarrow e + A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The

Neutrino Wavelength

$$\lambda_{v} = \frac{197 \,\mathrm{fm}}{E_{v} (\mathrm{MeV})}$$
Coherence Condition :
 $\Delta k_{v} R_{nucleus} <\sim 1$
 $\lambda_{v} \sim 50 \,\mathrm{fm}, > R_{nucleus} \approx 6 \,\mathrm{fm}$ for Ar

- 对于*Ev*<50MeV的CvNS过程,<u>转移动量对应的波长>10fm,其大</u> <u>于原子核半径。</u>
- 中微子与原子核中的所有核子作用,有Coherent增强,考虑温伯格角的影响,截面 « N², N 为中子数
- D. Z. Freedman, PRD 9 (5) 1974
- * D.Z. Freedman, D.N. Schramm, and D.L. Tubbs. Ann. Rev. Nucl. Part. Sci. 27, 167 (1977)

Coherent v-Nucleus Scattering: A New Tool

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T_{\mathrm{rec}}} = \frac{G_{\mathrm{F}}^2 M}{\pi} \left(1 - \frac{M T_{\mathrm{rec}}}{2\epsilon_{\nu}^2}\right) |\mathcal{A}|^2$$
$$\mathcal{A} = \left(\frac{1}{2} - 2\sin^2\theta_{\mathrm{W}}\right) Z F_{\mathrm{p}}(q) - \frac{1}{2} N F_{\mathrm{n}}(q)$$

- 超新星探测:最大的作用截面
 DUNE & LBL CP测量
- > WIMP暗物质探测地板
- > 贫瘠中微子寻找的工具
- 弱作用之外新物理寻找(作用截
 面)
- 中微子磁矩
- 中子分布函数

中微子-核散射实验很多人在做

W. Maneschg, Neutrino2018				Comparison of events rates - realistic flux
ν source	π -DAR ν 's	reactor ν 's] 10-	Ge at reactor, $E_{\mu} = 3$ MeV Ge at nDAB, $E_{\nu} = 30$ MeV
Experiments	COHERENT	CONNIE, CONUS, MINER,) L	
& Projects		u-cleus, $ u$ GEN, RED-100,	10 ³ -	
		RICOCHET, TEXONO,	g ⁻¹]	
ν flux, Φ_{ν}	$4 imes 10^{15}/ m s ightarrow$	$2 \times 10^{20}/(s \cdot GW) \rightarrow$	10 ¹	
	$4 \times 10^7 / (s \cdot cm^2)$	$2 \times 10^{13} / (s \cdot cm^2)$	ents	Detector
	in 20m dist. @ SNS	in 15m dist. @ 3 GW core	20 5 10-1	throshold
u flux: on/off	pulsed-beam (60 Hz)	rare shut down periods	age 10 - 1	unesnoid
u flavor	$ u_{\mu}, \nu_{e}, \overline{ u_{\mu}} $	$\bar{\nu_e}$	Ň	
$ u$ ener., $E_{ u}$	<50 MeV	<8 MeV	10-3	
	\rightarrow cohdecoh. reg.	ightarrow coh. reg.		
overburden	shallow depth	shallow depth		
troublesome bg	neutrons	neutrons	10 ⁻⁵	10 ⁻² 10 ⁻¹ 10 ⁰ 10 ¹ 10 Becoil energy T [keV]

- •反应堆中微子源:
 - CONNIE, CONUS, MINER, Nu-CLEUS, RICOCHET,
 - TEXONO, RED-100, nuGEN
- •SNS中微子源:
 - COHERENT

目前CEvNS的测量结果

表 2.1 现阶段测量的CEvNS的实验结果

实验	靶质量(kg)	中微子源	CEvNS事例数	置信度
COHERENT: CsI	14.6	- DARENS	134	6.7 σ
COHERENT: CENNS-10	22	$\pi - DAK SNS$	121	$> 3\sigma$
CONUS: Ge	3.73	NPP 3.9 GW	11.6	-

图1: COHERENT—Csl测量结果

台山反应堆v-N相干散射

- 更为精确的测量,如大亚湾中微子实验,
- 高灵敏度探测器, 核反冲能大
- •大质量,低阈值探测器
- •每天几百个coherent散射事例,美国COHERENT实验三年来总事例数不 到1,000
- •检验标准模型,测量温伯格角、中微子磁矩,寻找非标准相互作用等

台山v-N相干散射

台山v-N相干散射

• 低阈值探测器(0.5keVnr-0.1keVee-4~5电离电子,更多研究,做到<4 电离电子?)

台山反应堆中微子--氯相干散射实验

- 使用200 kg贫氩,和国际同类实验相比具有明显优势
 - •大统计量(每天1,000左右),原子核反冲能比Xe、Cs、I等探测器高3倍

科技部十四五国家重点项目优先支持:反应堆中微子监测

•反应堆(有/无)高灵敏度探测(氩,大质量,低阈值)

•反应堆能谱测量(TAO)

反应堆方向测量(?)

中大的发展规划

台山反应堆中微子监测-氩探测器实验

- •实验计划在TAO旁边开展,距离 反应堆35米
- •完成探测器初步设计,本底模 拟给出6:1的信噪比
- ・正在优化设计、开展关键技术 预研中
 - ✓新型TPC设计
 - √光电读出器件选型、低温前放
 - √高稳定性的制冷纯化系统
- •列入高能所战略发展重点方向 之一

高能所液氩探测器发展

- 氩的液化
- TPB镀膜,低温PMT
- 低温制冷,温度控制,液氩纯化
- 几公斤级双相氩探测器
- 吨级单项液氩探测器研制;
- 低阈值氩探测器发展;

台山反应堆近点实验: TAO

- ~2吨掺钆液闪探测器 + 10m2 SiPM, 50% PDE, 4500p.e./MeV
- ・零下50度的吨级,能量分辨率好于2%@1MeV
 - ✓精确测量反应堆中微子能谱及其精细结构
 - ✓为JUNO提供模型无关的预期能谱
- •选址已经确定,探测器设计建设中,预计2022年运行 CDR: 2005.08745

反应堆中微子方向测量(?)

MIMAC 中国合作组

Figure 5. The preliminary mechanical design of the demonstrator of MIMAC -1 m³.

根据MIMAC法方的设计,研制1 m³ 探测器
 高能所,交大,清华,科大合作

反应堆中微子方向测量 (?)

- □ 采用高分辨的微结构气体放大器MICROMEGAS技术
- □ 专门研发的自触发快速读出电子学(ASIC)
- 是目前暗物质方向性探测实验中能探测三维径迹能量最低的 实验

中大的发展规划

塑料闪烁体:

- 塑料闪烁体+中子闪烁屏
- 能够便捷的实现模块化, 增加探测器体积
- 完全没有化学液体泄漏风险
- 组装(无需低温系统支持)及可移动性更高
- •可以更灵活配置其他监测传感器, (alpha, beta, gamma), 用于多媒介综合测量
- 联合物理学院与中法核学院的专业资源,测试多媒介综合反应堆监控的潜力
 当前进度:
- 实验室配置完成
- 探测器组装测试进行中
- 期望利用TAO提供实地测量数据

