国内外硅光电倍增器 (SiPM) 的现状及发展趋势

- •什么是硅光电倍增器 (SiPM)
- 有代表性的SiPM结构
- •国内外SiPM的现状
- SiPM的发展趋势——数字SiPM
- •结语

什么是硅光电倍增器 (SiPM)

• 硅光电倍增器 (SiPM--silicon photomultiplier)是一种由工作
于雪崩击穿电压之上和具有雪崩猝灭机制的雪崩光电二极管
阵列并联构成的,具有极佳的光子数分辨和单光子探测灵敏
度的硅基弱光探测器。

SiPM ≈ G-APD Array

关键词: 硅光电探测器、雪崩光电二极管(APD) 阵列、雪崩淬灭、
<u>"盖革"模式(Geiger mode)</u>,光子数分辨、单光子探测

• SiPM是上个世纪九十年代兴起的一种半导体高灵敏(单光子)探测器,在粒子物理与 核物理研究、核医学诊疗、激光雷达、荧光检测领域有有非常重要和广泛的应用

Avalanche Photodiode and Operating Modes

I-V characteristic for a reverse biased SPAD with 10m diameter and ~25V breakdown voltage, in dark (F. Zappa et al. / Sensors and Actuators A 140 (2007) 103–112)

Passive Quenching

Active Quenching

6

韩德俊,

半导体 的雪崩 击穿与 淬灭机 理早在 上个世 纪60年 代研究 等离子 体微区 不稳效 应时建 立起来

韩德俊,

中国高能物理非加速器战略研讨会,

2021-5-16, 北京

Passive Quenching G-APD

- ON condition: avalanche triggered, switch closed, C_D discharges to V_{BD} with a time constant R_sC_D (discharge time), at the same time the external current asymptotic grows to (Vbias-Vbd)/(Rq+Rd
- OFF condition: avalanche quenched, switch open, capacitance charged until no current flowing. From V_{BD} to V_{Bias} with time constant R_QC_D (recovery time)
 Standard output signal

有代表性的SiPM结构(1)

Russian CPTA, V. Golovin, Patent No. RU 2142175, 1998. ; Z. Sadygov, Patent No. RU 2102820, 1998 ; V. Saveliev, V. Golovin, NIM-A, 442 (2000) 223.

Z. Sadygov – JINR/Micron (Dubna)-*NIMA 567 (2006)70*

Russian MePhi/Pulsar, Dolgoshein, NIMA 563 (2006)

<u>1989-1990</u> MRS结构,采用 SiC或者SiXOY做淬灭电阻,半 透明金属Ti做电极

<u>**2002</u>** Avalanche Microchannel/pixel Photo Diodes (AMPD),</u> 2002 表面多晶硅淬灭电阻条结构

有代表性的SiPM结构(2)

Russian MePhi/Pulsar ,P.Buzhan, B.Dolgoshein, NIM-A610 (2009)131–134

中国 NDL, NIM A621 (2010) 116-120

2009 微单元间采用沟槽隔离结构,

2009 体硅电阻淬灭SiPM

<u>2010</u> 外延电阻淬灭(EQR) SiPM, 兼顾高探测效率和大 动态范围

韩德俊, 中国高能物理非加速器战略研讨会, 2021-5-16, 北京

有代表性的SiPM结构(3)

日本滨松, T. Nagano, et al., 2011 IEEE Nuclear Science Symposium, NP5.S-130

2011 用金属条做淬灭电阻,

Gola A, et al., 2013 IEEE Nuclear Science Symposium Conference Record

2013 位置灵敏 SiPM

(LG-SiPM)

中国 NDL, IEEE TRANS. ON ELECTRON DEVICES. 61(2014)3229-3232

2014 位置灵敏SiPM, 结 构简单, 位置和时间分 读出通道少 辨率高、 11

韩德俊,中国高能物理非加速器战略研讨会,2021-5-16,北京

研发SiPM的主要机构 [Fabio Acerbi, "SiPM overview: status and trends", 2018 International Workshop on New Photon-Detectors PD18]

Hamamatsu VS NDL

	Hamamatsu MPPC			NDL SIPM		
Active Area	S14160-3010	S14160-3015	S14160-3050	EQR06 3030D	EQR10 3030D	EQR15 3030D
	3.0×3.0 mm ²	$3.0 \times 3.0 \text{ mm}^2$	$3.0 \times 3.0 \text{ mm}^2$	$3.0 imes 3.0 \text{mm}^2$	$3.0 \times 3.0 \text{ mm}^2$	$3.0 \times 3.0 \text{ mm}^2$
Effective Pitch	10	15	50	6 µm	10 µm	15 μm
Microcell NO.	89984	39984	3531	244720	90000	40000
Breakdown Voltage	38±3 V	38±3 V	38±3 V	24.5±0.5V	28.5±0.5V	28±0.2V
Peak PDE	18%@460nm	32%@460nm	50%@450nm	30%@420nm	36%@420nm	45%@420nm
DCR (kHz)	700-2100	700-2100	0.6-1.8 μΑ	2500	3600	2400
Gain	1.8×10 ⁵	3.6×10 ⁵	2.5×10 ⁶	8×10 ⁴	1.7×10 ⁵	4×10 ⁵
Terminal C(pF)	530	530	500	45.8	31	48
Temp. Coef. For V _b	34mv/°C	34mv/°C	34mv/°C	20mv/°C	19 mv/°C	28 mV/°C

SensL VS NDL

	SensL SiPM			NDL SiPM		
Active Area	C10010	J30020	J30035	EQR06 3030D	EQR10 3030D	EQR15 3030D
	$1.0 imes 1.0 \text{ mm}^2$	$3.0 \times 3.0 \text{ mm}^2$	$3.0 \times 3.0 \text{ mm}^2$	3.0 imes 3.0 mm ²	$3.0 \times 3.0 \text{ mm}^2$	$3.0 \times 3.0 \text{ mm}^2$
Effective Pitch	10 µm	20 µm	35 μm	6 µm	10 µm	15 μm
Microcell NO.	2880	14410	5676	244720	90000	40000
Breakdown Voltage	24.2-24.7 V	24.2-24.7 V	24.2-24.7 V	24.5±0.5V	$28.5\pm0.5V$	28±0.2V
Peak PDE	14%@420nm	30%@+2.5 V 38%@+5.0 V	38%@+2.5 V 50%@+6.0 V	30% @420nm	36%@420nm	45%@420nm
DCR (kHz/mm²)	30-96	50@+2.5 V 125@+5.0 V	50@+2.5 V 150@+6.0 V	278@+8v	400@+12V	267@+8v
Gain	2×10 ⁵	1.0×10 ⁶ @+2.5 V 1.9×10 ⁶ @+5.0 V	2.9×10^{6} @+2.5 V 6.3×10^{6} @+6.0 V	8×10^4 @+8V	1.7×10 ⁵ @+12V	$4 imes10^5$ @+8V
Terminal C(pF)	50	1040	1070	45.8	31	48
Temp. Coef. For V _b	21.5 mv/°C	21.5 mv/°C	21.5 mv/°C	20mv/°C	19 mv/°C	28 mV/°C

Philips, dSiPM, IEEE Nuclear Science Symposium/Medical Imaging Conference, Orlando, FL, Oct.28, <u>2009</u>

The dSiPM Takes Advantage of the Binary Nature

"Therefore, while the APD is a linear amplifier for the input optical signal with limited gain, the SPAD is a trigger device so the gain concept is meaningless." (source: Wikipedia)

其它dSiPM概念

B.L. Berube, et al., , IEEE Transactions on Nuclear Science, 62 (2015)710.

M.-J. Lee, et al., IEDM Tech. Dig., 2017, 16.6.1.

正面入射3D叠层数字SiPM的结构

背面入射3D叠层SPAD阵列结构示意图

Total number of SPAD pixels	189 x 600 pixels (H x V), approx. 110,000 pixels
Image size	Diagonal 6.25 mm (1/2.9- type)
Recommended light source wavelength	905 nm
SPAD unit cell size	10 μm x 10 μm
Element size (ToF pixel unit)	3 x 3 pixels (H x V)
Power consumption	1,192 mW
Photon detection efficiency	22%
Response speed	6 ns
Saturation signal amount (max. count rate)	60,000,000 cps
Max. detection distance	300 m
Distance precision at 300 m	3 x 3 pixels (H x V) additive mode: 30 cm 6 x 6 pixels (H x V) additive mode: 15 cm

- 模拟SiPM的基本器件结构在2010年前后已基本建立起来
- 数字SiPM是大势所趋
- SiPM的应用方兴未艾
- NDL SiPM在兼顾大动态范围与高探测效率、快时间响应和高计数 率、抗辐射等方面有优势
- SiPM不大可能像PMT那样出现少数寡头企业垄断局面