超低本底高纯锗探测器的研制

清华大学工程物理系 高能物理分会非加速物理研讨会-关键和前瞻性技术研发专题 高能所,北京 2021年5月16日

HPGe探测器及其在低本底事例探测中的应用 低本底HPGe探测器相关新技术的发展 清华大学在相关领域的研究进展 总结

■ HPGe探测器及其在低本底事例探测中的应用

■ 低本底HPGe探测器相关新技术的发展

■ 清华大学在相关领域的研究进展

高纯锗探测器及其优势

- γ射线能谱的测量是辐射探测的重要方法;
- 高纯锗探测器是高端y谱仪的首选;
 - ✓ 能量分辨率: 高
 - ✓ 探测效率:大(单体尺寸达数kg级)
- 高纯锗晶体的纯度可以达到~13N,是人工可以制备的最纯的材料;
- 在基础研究、核监测、核应急、国土安全、
 环保、放射性管理等领域有着广泛的应用。

高纯锗探测器的应用-低本底γ谱仪

GeTHU@CJPL-I,为锦屏地下实验室建设、暗物质探测、 中微子探测 等实验提供材料筛选 **GeTHU-II**

10cm borated polyethylene

GeTHU-2s

微贝克每公斤量级辐射本底测量与分析装置@CJPL

高纯锗探测器的应用-暗物质探测

具有绝对优势

■ 点电极高纯锗 (CDEX、CoGENT实验) ✓ 阈值低、运行稳定,模块化。 ■ 低温量热高纯锗(美国CDMS实验) ✓ 阵列式, 甄别能力强; 目前约10kg。 10GeV以下低质量区: 高纯锗探测技术

10-39

PRL120, 241301, 2018

CDEX-1A 2016

DAM

10

2017

6

高纯锗探测器的应用-0ν2β衰变

- 阵列式高纯锗是国际上0v2β探测最好的探测技术之一
- GERDA-I 在0vββ半衰期测量上处于国际领先地位。
- GERDA-I: 18 kg; GERDA-II: ~35 kg。液氩屏蔽。
- MAJORANA: ~50 kg, 铅+铜屏蔽。
- LEGEND 200, LEGEND-1T.

- HPGe探测器及其在低本底事例探测中的应用
- 低本底HPGe探测器相关新技术的发展
- 清华大学在相关领域的研究进展

Ge的宇生放射性

⁶³Ni ⁶⁸Ga ⁵⁶Co ^{49}V ⁵⁵Fe 10 10^{-1} 12 5 6 7 8 9 10 11

- Cosmic-ray spectrum from CRY
- Production rate and spectrum by GEANT4

Counts [keV⁻¹kg⁻¹ day⁻¹] 57Co 58Co ⁶⁰Co ⁵⁵Fe ⁵⁴Mn ⁵¹Cr ⁴⁹V ³H Flat bkg Total bkg - C1B data Energy [keV] ✓ Agree well with CDEX-1B Exp. spectrum 10

e- re-arrangement

Ga K-shell 10.38 keV

Ga

 10^{2}

Ge

EC 100%

⁶⁸Ge

⁶⁵Zn

⁷³As

⁶⁸Ge

⁶⁸Ga ⁶⁵Zn

13

Ge宇生放射性的控制

- 同位素分离: 降低Ge-70元素的含量;
- 减小地面曝光时间:运输、晶体生长、探测器制备

宇生本底模拟

CJPL冷却时间 180天:~0.03 cpkkd@2-4 keV

地下生产制造, CJPL冷却3年: 天然锗: 10-4 cpkkd @ 2-4 keV,

富集锗: 10⁻⁵ cpkkd @ 2-4 keV

高纯无氧铜提纯

UG copper e-forming Facilities @CJPL-I

• 铜材料

10

10⁻²

10

10-6

本底(cpkkd)

• 2500m照射+实验测量

• →控制地面照射时间(地下制备) U/Th Analysis by ICP-MS: ~10⁻¹³g/g

GERDA实验与电子学相关的本底

		90% CL upper limit	Survival probabilities			90% CL upper limit
		on BI before cuts	AV	PSD	PSD after AV	on BI after cuts
Source	Location	$[\mathrm{cts}/(\mathrm{keV}\cdot\mathrm{kg}\cdot\mathrm{yr})]$	[%]	[%]	[%]	$[\mathrm{cts}/(\mathrm{keV}{\cdot}\mathrm{kg}{\cdot}\mathrm{yr})]$
²³⁸ U chain	HV cables	$4 \cdot 10^{-5}$	[7,10]	[20, 25]	[10, 15]	$[3 \cdot 10^{-7}, 6 \cdot 10^{-7}]$
²³⁸ U chain	signal cables	$2 \cdot 10^{-4}$	[7, 10]	[20, 25]	[10, 15]	$[1 \cdot 10^{-6}, 2 \cdot 10^{-6}]$
$^{238}\mathrm{U}$ chain	holders (Cu)	$6 \cdot 10^{-6}$	[10, 15]	[20, 25]	[10, 15]	$[6{\cdot}10^{-8}\ , 1{\cdot}10^{-7}\]$
$^{238}\mathrm{U}$ chain	holders (PTFE)	$4 \cdot 10^{-5}$	[10, 15]	[20, 25]	[10, 15]	$[4 \cdot 10^{-7} , 1 \cdot 10^{-6}]$
238 U chain	silicon plates	$8 \cdot 10^{-10}$	[10, 15]	[20, 25]	[10, 15]	$[8{\cdot}10^{-12}, 2{\cdot}10^{-11}]$
²³⁸ U chain	mini shroud	$1 \cdot 10^{-3}$	[2, 5]	[20, 25]	[10, 15]	$[2 \cdot 10^{-6}, 7 \cdot 10^{-6}]$
$^{238}\mathrm{U}$ chain	electronics	$4 \cdot 10^{-4}$	[10, 15]	[20, 25]	[10, 15]	$[4 \cdot 10^{-6}, 9 \cdot 10^{-6}]$
$^{238}\mathrm{U}$ chain	fibers	$1 \cdot 10^{-3}$	[1, 5]	[20, 25]	[10, 15]	$[1 \cdot 10^{-6}, 7 \cdot 10^{-6}]$
²³² Th chain	HV cables	$2 \cdot 10^{-6}$	[1, 2]	[30, 40]	[10, 20]	$[2 \cdot 10^{-9}, 7 \cdot 10^{-9}]$
232 Th chain	signal cables	$7 \cdot 10^{-6}$	[1, 2]	[30, 40]	[10, 20]	$[7 \cdot 10^{-9}, 3 \cdot 10^{-8}]$
²³² Th chain	holders (Cu)	$4 \cdot 10^{-6}$	[1, 2]	[30, 40]	[10, 20]	$[4{\cdot}10^{-9}\ , 2{\cdot}10^{-8}\]$
232 Th chain	holders (PTFE)	1.10^{-4}	[1, 2]	[30, 40]	[10, 20]	$[1 \cdot 10^{-7}, 5 \cdot 10^{-7}]$
²³² Th chain	silicon plates	$3 \cdot 10^{-8}$	[1, 2]	[30, 40]	[10, 20]	$[3{\cdot}10^{-11}, 1{\cdot}10^{-10}]$
232 Th chain	mini shroud	1.10^{-3}	[1, 2]	[30, 40]	[10, 20]	$[1 \cdot 10^{-6}, 5 \cdot 10^{-6}]$
$^{232}\mathrm{Th}$ chain	electronics	$6 \cdot 10^{-4}$	[1, 2]	[30, 40]	[10, 20]	$[6 \cdot 10^{-7}, 3 \cdot 10^{-6}]$
$^{232}\mathrm{Th}$ chain	fibers	$5 \cdot 10^{-3}$	[1, 2]	[30, 40]	[10, 20]	$(5 \cdot 10^{-6}, 2 \cdot 10^{-5})$

HPGe读出电子学相关的本底已是系统本底的主要部分

新型HPGe探测器的设计-- 增大单体质量

探测器单体体积的增大

2019年: 170 mm x 60 mm

前端电子学-ASIC-基材-电缆

- 噪声优化
 - T1探测器漏电流减小→b噪声减小
 - 板材对噪声的影响: Rogers4350b→5880
- 低本底前端电子学
 - 低本底电路基板
 - 低本底电缆

		Material	Signal	HV
1	central conductor	Bare Cu	0.0762 mm Ø	0.152 mm <i>ф</i>
2	inner dielectric	FEP / PFA	0.254 mm ϕ	0.77 mm <i>ф</i>
3	helical shield	Bare Cu	AWG50	AWG50
4	jacket	FEP / PFA	0.4 mm <i>ф</i>	1.2 mm <i>φ</i>
Linear mass density			0.4 g/m	3 g/m

噪声: 26个电子→21.7个电子 182eV FWHM →152eV FWHM

噪声: 21.7个电子→13.3个电子 152eV FWHM→93eV FWHM

PTFE基板

- 考虑采用熔融石英基材自行蒸镀高纯 铜材制作电极。
- •目前已确定国内加工厂商,基材及掩 膜加工已完成。

硅基板

- •目前已知的本底最低的电路基板 材料;
- 可以微加工→减少质量;
- •初步完成第一版加工。

CDEX-1A&B: 1kg PPC Ge \times 2

Gerda/Legend200: 液氩反符合探测器, WLS光纤读出

波形甄别@HPGe—点电极高纯锗探测器

PCGe探测器在暗物质直接探测的应用

• CDEX: CDEX-1A/B, CDEX-10, CDEX-10X

■ HPGe探测器及其在低本底事例探测中的应用

■ 相关新技术的发展

■ 清华大学在相关领域的研究进展

CDEX 实验规划

- 晶体的生长
- 探测器的研制
- 低温低噪声前端电子学的研究
- 在暗物质探测的应用
- 谱仪系统的研发
 - 新型制冷方式的实现

高纯锗探测器的制备工艺

高纯锗探测器制备实验室

机械加工间

化学处理间

真空镀膜间

离子注入间

组装与测试实验室

电子学测试间

HPGe探测器的研制

◆ 已成功研制出60多个(次)探测器
 >P型: 同轴、平面、点电极、宽能量阈、反向同轴等;
 >N型: 同轴

高纯锗探测器谱仪产品系列

液氮真空直冷HPGe探测器的研发

全部自行研制:

- ASIC;
- 真空制冷装置

Peak: 2443.97 = 122.06 keV FWHW: 0.62 FW.10k: 1.74 Library: Co-57 (Coball) at 122.06 ; 26.71 cA Gross Area: 249088 Net Area: 1129253 ± 3927 Gross/Net Count Rate: 50.43 / 22.86 cps

液氮裸浸HPGe探测器的研发

自研PPC-HPGe探测器及ASIC裸浸实验研究

⁵⁷Co spectrum

氮气操作、液氮运行的密封实验环境的建立

高纯锗谱仪软件设计

- 完成了实验室高纯锗谱仪能谱采集软件的设计;
- 实验室高纯锗谱仪能谱分析软件的设计;
- 便携式高纯锗谱仪的软件设计;
- 无源刻度软件的研发。

- 高纯锗探测器仍然是能量分辨率最高的辐射探测器,在许多传统行业仍处在无可取代的地位;
- 基础科学的应用催生了一系列新型HPGe探 测器的设计;
- 超低本底高纯锗探测器的研制在基础研究
 等领域意义重大;
- 清华大学全链条布局,已经在高纯锗晶体 生长、探测器研制、新型制冷方式等方面 取得了一系列突破,正在推出一系列高纯 锗谱仪系统;
- 未来将逐步应用到暗物质探测、双贝塔衰 变等基础研究中,解决国家在此技术上的 "卡脖子"的问题

■ 为核结构的前沿基础研究提供新层次的探测能力。

GRETINA

 ✓ 高纯锗阵列探测器组成 的4π伽马谱仪
 ✓ 180个六边形晶体
 ✓ 总质量362 kg
 ✓ 单个晶体质量2kg
 ✓ 立体角覆盖率82%

- ✓ 28个同轴N型探测器组成
 ✓ 单体质量2kg
- ✓ 总质量约56kg

中国在束伽马谱学探测阵列共建协议

探测器的耗尽

- BEGe: Diameter 8cm, length 3 cm
- Impurity $\rho = 0.7 \times 10^{10} \text{ cm}^{-3}$
- 100 V steps

Depletion: 1200V

探测器的耗尽

- BEGe: Diameter 8cm, length 5 cm
- Impurity $\rho = 0.7 \times 10^{10} \text{ cm}^{-3}$
- 100 V steps

Depletion: 5200 V

探测器的耗尽

- Diameter 8cm, length 5 cm, 1 x 2.5 cm hole (0.8% of crystal mass)
- Impurity $\rho = 0.7 \times 10^{10} \text{ cm}^{-3}$
- 100 V steps

Depletion: 1400 V

