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提纲

• 前景污染带来的挑战

• 前景扣除⽅法的总结

• 前景辐射性质的研究

• 总结
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Observed polarization maps 



Predicted CMB polarization maps 



Component Spectrum Polarization 
fraction References

Power-law, β~-3.1, 
possible curvature

~15-20% 
(up to ~50%)

Page et al. (2007), Kogut et al. 
(2007), Macellari et al. (2011)

Modified black-body, flattening 
at frequencies <300 GHz

~5% 
(up to ~15+%!)

Ponthieu et al. (2005), Planck 
CollaboraUon, ESLAB conference 
(2013).

Magnetic dipole?
Similar to thermal dust, but 
flatter index at frequencies 
~100 GHz

Variable 
(up to ~35%!?)

Draine & Lazarian (1999), Draine 
& Hensley (2013)

Spinning dust Peaked spectrum ~10-60 
GHz. <~1%

Lazarian & Draine (2000), Dickinson (2011), 
Lopez-Caraballo et al. (2011), Macellari et 
al. (2011), Rubino-Martin et al. (2012)

Free-free
Power-law β~-2.14 with positive 
curvature (steepening at frequencies 
>~100 GHz)

<~1%
Rybicki & Lightman (1979), 
Keating et al. (1998), Macellari et 
al. (2011)

Synchrotron	

Thermal	dust

 Challenges: foreground contamination 
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Challenges & Solutions

Challenge：
necessary to subtract Galactic foregrounds down to 
tens of nK for B-mode detection (if r~ 0.01)

frequency dependency angular size dependency 



• Foreground	removal:	one	of	the	major	challenges	in	B-mode	
detection	
- developing	pipelines	(at	least	3)	for	AliCPT		
- ILC/ABS/template	fitting/SMICA/SEVEM		

• Foreground	science:	
- reconstruct	magnetic/dusts/electron	fields	
- understand	the	physical	origins	of	foreground	components		
- reconstruct	DM	map	for	FRB	from	Q/U	maps?	
- low-l	CEE	may	improve	tau		
- ……

 Science and main tasks 
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Existing foreground cleaning 
methods 
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Hamimeche-Lewis	likelihood		(l>30)

foreground model:

• multi-frequency cross-spectrum likelihood 
of the data for a given proposed model with 
a few parameters (dust+synchrotron…) 

• using MCMC to estimate posterior values 
of r and foreground parameters

 Cleaning method:Template fitting
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• cross-spectra between observed maps and all the 
polarized bands of Planck/WMAP

• Joint analysis based on likelihood analysis 
(BICEP2/Keck and Planck Collaborations 15&16)

 Cleaning method:Template fitting



 Cleaning method: ILC
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choice for the estimator of the CMB map is a linear com-
bination of multi-frequency maps, which is as follows:

X

i

wi(x)T (x, νi).

To keep the CMB unchanged, a contraint is given such
that the sum of linear weights over frequency channels is
equal to unity:

X

i

wi(x) = 1. (2)

With Eq. 1 and 2, it is straightforward to show that
X

i

wi(x) T (x, νi) = Tcmb(x) +
X

i

wi(x) Tfg(x, νi). (3)

We can make the foreground signal in Eq. 3 vanish, if
the linear weights are chosen such that :

X

i

wi(x) Tfg(x, νi) = 0. (4)

Since we have no information on Tfg(x, νi), we need some
function to maximize or minimize, which will lead us to-
ward such linear weights. One of such powerful methods
is variance minimization of the linear combination map
[3, 5]. It can be shown that the variance of a linear com-
bination map is

σ
2 =

*√
X

i

wi(x) T (x, νi)

!2+
(5)

≈ C
2 + 2

*
Tcmb(x)

X

i

wi(x) Tfg(x, νi)

+

+

*√
X

i

wi(x) Tfg(x, νi)

!2+

where the constant term C
2 is the variance of CMB

and therefore, independent of the choice of linear weight.
Though the cross term 2 �Tcmb(x)

P
i wi(x) Tfg(x, νi)� in

Eq. 5 vanishes, when averaged over a whole ensemble of
universes, it is not necessarily zero for our single observ-
able Universe. Hence, we assume the cross term to be
small but non-zero, and will make perturbative correc-
tion for it (see Sec. IV). For now, we neglect the cross
term.

The linear weights, which yield a foreground-free map,
are functions of the frequency spectrum of foreground
components. Since the frequency spectrum varies over
sky (see [6] for a recent treatment), the linear weights
should possess spatial variability. To accommodate the
spatial variability of linear weights, the WMAP team de-
fined twelve disjoint regions in the WMAP three year
ILC (WILC3YR) construction, where distinct values of
linear weights are assumed for each region. The linear
weights of WILC3YR have the form wij , where i and j

denote a frequency channel and a region index. Though
the WMAP team used regions of smoothed boundaries
in the final map making, there still exist intrinsic dis-
continuities from the use of disjoint regions in variance
minimization, which may even create artificial peculiari-
ties.

To reflect the varying powers of foregrounds on differ-
ent angular scales, linear weights contrived by Tegmark
et al. has multipole dependency as well [7], and have
the form w

ij
l . We can easily show that optimal linear

weights should possess m dependency as well as l de-
pendency. For illustrative purposes, let’s consider two
frequency channel observation and assume the signal to
consist of CMB and one foreground component only. The
spherical harmonic coefficient of ith channel is given by
a

i
lm = a

cmb
lm + a

i,fg
lm , where a

i,fg
lm denotes the spherical har-

monic coefficient of a foreground at ith channel. Keeping
the CMB signal unchanged, we assign a linear weight w

and (1−w) to the frequency channel 1 and 2 respectively.
Then, the spherical harmonic coefficient of a linear com-
bination map is given by

w a
1
lm + (1− w)a2

lm = a
cmb
lm + wa

1,fg
lm + (1− w)a2,fg

lm .

Obviously the linear weight w yielding a foreground-free
linear combination map is

w =
a
2,fg
lm

a
2,fg
lm − a

1,fg
lm

. (6)

As shown in Eq. 6, optimal linear weights should possess
m dependency as well as l dependency.

The linear combination map of minimum foreground
formed with multi-frequency maps

T (θ,φ) =
X

i

w
i(θ,φ)T (θ,φ, νi), (7)

can be rewritten in the spherical harmonic space, using
the Clebsch-Gordon relation as:

aLM = (8)

(−1)M

r
2L + 1

4π

X

lm

X

l�m�

p
(2l + 1)(2l� + 1)

×

µ
l l

�
L

m m
�
−M

∂µ
l l

�
L

0 0 0

∂ X

i

w
i
lm a

i
l�m� ,

where

aLM =
Z

Y
∗
LM (θ,φ)T (θ,φ) dΩ,

w
i
lm =

Z
Y

∗
lm(θ,φ)w

i(θ,φ) dΩ,

a
i
l�m� =

Z
Y

∗
l�m�(θ,φ)T (θ,φ, νi) dΩ.

The constraint
P

i w
i(θ,φ) = 1 imposed to preserve the

CMB signal is expressed in spherical harmonic space as
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FIG. 16: Anisotropy of l = 4 [µK]: HILC5YR (top),
WILC5YR (middle), WILC5YR - HILC5YR (bottom)

FIG. 17: Anisotropy of l = 5: HILC5YR (top), WILC5YR
(middle), WILC5YR - HILC5YR (bottom)

The linear weights of HILC5YR are shown in Fig.
18. In Fig. 19, we show the variance of the lin-
ear weights of HILC5YR, which is computed by W

i
l =

(2l + 1)−1
P

m |w
i
lm|

2.

FIG. 18: The HILC5YR linear weights for the K, Ka, Q, V,
and W band map (from top to bottom)
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FIG. 19: Variance of HILC5YR linear weights

Internal Linear Combination: Introducing a weighting vector “w” for all 
frequency maps, but keeping the CMB signal unchanged in sum.

where T T
j C

�1T j has the information about the cross-correlation between the the templates them-
selves. This equation is equally valid in pixel space or harmonic space. However, in pixel space
dealing with incomplete sky coverages is easier and, in addition, the noise is usually a diagonal
matrix. On the other hand, in this space the signal covariance matrix is large and not sparse, where
in harmonic space and under the assumption of Gaussianity, the signal covariance is diagonal. Al-
though, approximating the noise as uniform and uncorrelated over the sky, one can make the noise
covariance diagonal in this space too.

Template cleaning has a number of advantages, the first to be its simplicity. The technique makes
full use of the spatial information in the template map, which is important for the non-stationary,
highly non-Gaussian emission distribution, typical of Galactic foregrounds. It is also possible to fit
multiple template maps to a single frequency channel, where in pixel-by-pixel techniques at least
one frequency channel is required to fit each foreground component. There are also disadvantages
to this technique and that is that imperfect models of the templates could add systematics and
non-Gaussianities to the data. Refer to [28] for a more detailed description of template fitting
techniques.

Template cleaning of the COBE/FIRAS data reduced a complicated foreground by a factor of
10 by using only 3 spatial templates [37]. WMAP team used a more complex technique, called the
ILC, explained next, for their template fitting [39].

ILC: Internal Linear Combination

In this method very little is assumed about the different components in the signal. The main
component is assumed to have the same template in all the frequency bands and the observations
are calibrated with respect to this component. Data y has the form

yi(p) = s(p) + fi(p) + ni(p) , (19)

where i denotes the frequency channels, fi(p) and ni(p) are the foreground and noise contributions
in pixel p respectively. One then looks for the solution

ŝ(p) =
X

i

wi(p)yi(p) , (20)

where the weights wi(p) maximize a certain criterion about the reconstructed estimate ŝ(p), while
keeping the component of interest unchanged, and satisfy

P
i wi = 1. The simplest case is assuming

the weights are independent of p and try to minimize the variance �
2 of the estimated map. Hence

having
ŝ(p) = s(p) +

X

i

wifi(p) +
X

i

wini(p) , (21)

under the assumption of decorrelation between s(p) and all the foregrounds or noise. The variance
of the ILC map is

�
2 = w†Cw , (22)

where C =
⌦
yy†↵ with y and w standing for vectors of elements yi and wi. The minimum is obtained

using the Lagrange multiplier method, which has as a solution

wi =

P
j

⇥
C�1⇤

ijP
ij

⇥
C�1⇤

ij

. (23)
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where

• Minimize the variance of the weighted map to analytically derive the best “w” 
• The cleaned map is regarded as a pure CMB map

ILC weighting 

CMB estimator

Empirical covariance 
of data 
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 Cleaning method: ABS
2

instrumental noise.

2.1. The analytical solution for the case of no
instrument noise

Our method works on Dij(!), the Nf × Nf matrix of
cross bandpower between the i-th and j-th frequency
bands. Here i, j = 1, 2 · · ·Nf and Nf is the number of
frequencies. In thermodynamic units,

Dij(!) = fB
i f

B
j DB(!) +Dfore

ij (!) . (1)

Since we use the thermodynamic units, fB = 1. Dfore
ij is

the cross bandpower matrix of foreground. It has order
Nf , but its rank M depends on the number of indepen-
dent foreground components. Our task is to solve Eq. 1
for DB(!) of a single multipole ! bin, without assump-
tions of Dfore

ij . This may appear as a mission impossible.
However, due to two facts that Nf ×Nf matrix Dij has
only M +1 eigenvectors and that fB(ν) is known, we are
able to prove the following two key results.

• The solution to DB is unique, as long as M <
Nf .

• The analytical solution exists, given by

DB =

(

M+1
∑

µ=1

G2
µλ

−1
µ

)−1

. (2)

Here, the µ-th eigenvector ofDij is E
(µ), which has eigen-

value λµ and normalization E(µ) · E(µ) = 1. The eigen-
modes are always ranked with decreasing order in |λµ|.
Since Dij is positive definite, λµ > 0. Gµ ≡ fB · E(µ).
We prove the uniqueness of the solution and derive Eq.
2 in the appendix. Eq. 2 also proves the uniqueness of
the solution.
Eq. 2 is not straightforward to understand. However,

for the limiting case of M ≤ 2, one can solve for all
eigenmodes analytically and verify Eq. 2 by brute-force.
This equation also confirms our instinct that any fore-
ground components orthogonal to the CMB signal in the
frequency space do not interfere the B-mode reconstruc-
tion.

2.2. Natural extension to the case with instrument noise

Instrument noise adds random noise δDinst
ij on the ob-

served bandpower,

Dobs
ij ≡ Dij + δDinst

ij . (3)

Surprisingly, Eq. 2 can still be implemented in the data
analysis, with straightforward modification to account
for instrument noise.

• Step 1. We compute all Nf eigenmodes of Dobs
ij .

• Step 2. We measure DB from Eq. 2, but only using
eigenmodes with λµ > σinst

D .

Here σinst
D is the r.m.s. of instrument noise in the band-

power. For brevity, we assume that all frequency bands

Table 1
We test our ABS method against various CMB frequency

configurations and instrumental noise. σinst
D

is the r.m.s. error in
the bandpower measurement caused by instrumental noise.

Labels frequency/GHz σinst
D

/µK2

S0 30, 70, 100, 150, 217 & 353
S1 95, 150, 220 & 270
S2 35, 95, 150, 220 & 270
S3 35, 95, 150, 220, 270 & 353 (10−5, 10−2)
S4 30, 36, 43, 51, 62, 75, 90,105, 135

160, 185,200, 220, 265, 300 & 320

have identical σinst
D .1 Instrument noise not only af-

fects physical eigenmodes, but also induces unphysical
eigenmodes with eigenvalues of typical amplitude σinst

D .
Therefore we exclude eigenmodes with λµ ≤ σinst

D . This
selection criteria may not be optimal, but it already
works well as we will show later.
The above method of measuring DB, even including

the determination of M , is completely fixed by the data,
and relies on no priors of foregrounds.

3. TESTING THE ABS METHOD

Next we test the ABS method against simulated Dobs
ij

with a variety of foregrounds, instrument noise and sur-
vey frequency configurations.

3.1. Simulated observations

To generate simulated Dobs
ij , we approximate

δDinst
ij as Gaussian distributed with dispersion

σinst
D . σinst

D is a key factor in CMB B-mode
search. BICEP2/Keck has reached σinst

D ∼ 10−3µK2

(BICEP2/Keck and Planck Collaborations et al. 2015).
Future experiments can go well below 10−4µK2. For
example, PRISM (André et al. 2014) has typical noise
∼ 70µK/detector/arcmin2, ∼ 200 detectors per band,
σinst
D % 3.7 × 10−5µK2(!/∆!)1/2(0.5/fsky)1/2(!/80).

Here ∆! is the width of multipole bin and fsky is the
fractional sky coverage. Other experiments such as
COrE, EPIC and LiteBIRD have similar sensitivity. We
consider a wide range of σinst

D ∈ (10−5, 10−2)µK2 to
include all these possibilities.
Frequency configuration is crucial for foreground re-

moval. We consider five configurations (S0-S4), shown
in Table 1.

• S0 is the fiducial one, with 6 bands centered at 30,
70, 100, 150, 217 & 353 GHz. This configuration is
similar to Planck. It has a wide frequency coverage,
good for both radio and foreground removal.

• S1 has 4 bands at 95, 150, 220 & 270 GHz (Keck
array-like, Grayson et al. (2016)). A major differ-
ence of S1 to S0 is the lack of low frequency bands
and hence limited capability of radio foreground
identification and removal.

1 For realistic surveys, instrumental noise varies across frequency
bands and the cut in step 2 should be replaced by some sort of
average over σinst

D
of each band. For such situation, quantitative

study has to target at each specific surveys. Since we do not expect
fundamental impacts to our method, we leave such investigation in
future works.

▪ Goal: to solve for CMB power spectrum without any assumptions 
on foregrounds; Intuitively, this task seems to be impossible! 

An analytical unique solution of DB(l) 
achieved by the Sylvester’s determinant 
theorem as long as M< Nf

M: rank of Dfore, M non-zero eigenvalues  
Nf: number of frequency channels
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instrument noise
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bands. Here i, j = 1, 2 · · ·Nf and Nf is the number of
frequencies. In thermodynamic units,

Dij(!) = fB
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B
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ij is

the cross bandpower matrix of foreground. It has order
Nf , but its rank M depends on the number of indepen-
dent foreground components. Our task is to solve Eq. 1
for DB(!) of a single multipole ! bin, without assump-
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ij . This may appear as a mission impossible.
However, due to two facts that Nf ×Nf matrix Dij has
only M +1 eigenvectors and that fB(ν) is known, we are
able to prove the following two key results.

• The solution to DB is unique, as long as M <
Nf .

• The analytical solution exists, given by

DB =

(

M+1
∑

µ=1

G2
µλ

−1
µ

)−1

. (2)

Here, the µ-th eigenvector ofDij is E
(µ), which has eigen-

value λµ and normalization E(µ) · E(µ) = 1. The eigen-
modes are always ranked with decreasing order in |λµ|.
Since Dij is positive definite, λµ > 0. Gµ ≡ fB · E(µ).
We prove the uniqueness of the solution and derive Eq.
2 in the appendix. Eq. 2 also proves the uniqueness of
the solution.
Eq. 2 is not straightforward to understand. However,

for the limiting case of M ≤ 2, one can solve for all
eigenmodes analytically and verify Eq. 2 by brute-force.
This equation also confirms our instinct that any fore-
ground components orthogonal to the CMB signal in the
frequency space do not interfere the B-mode reconstruc-
tion.

2.2. Natural extension to the case with instrument noise

Instrument noise adds random noise δDinst
ij on the ob-

served bandpower,

Dobs
ij ≡ Dij + δDinst

ij . (3)

Surprisingly, Eq. 2 can still be implemented in the data
analysis, with straightforward modification to account
for instrument noise.

• Step 1. We compute all Nf eigenmodes of Dobs
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• Step 2. We measure DB from Eq. 2, but only using
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D is the r.m.s. of instrument noise in the band-

power. For brevity, we assume that all frequency bands
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S4 30, 36, 43, 51, 62, 75, 90,105, 135
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D .1 Instrument noise not only af-

fects physical eigenmodes, but also induces unphysical
eigenmodes with eigenvalues of typical amplitude σinst

D .
Therefore we exclude eigenmodes with λµ ≤ σinst

D . This
selection criteria may not be optimal, but it already
works well as we will show later.
The above method of measuring DB, even including

the determination of M , is completely fixed by the data,
and relies on no priors of foregrounds.

3. TESTING THE ABS METHOD

Next we test the ABS method against simulated Dobs
ij

with a variety of foregrounds, instrument noise and sur-
vey frequency configurations.

3.1. Simulated observations

To generate simulated Dobs
ij , we approximate

δDinst
ij as Gaussian distributed with dispersion

σinst
D . σinst

D is a key factor in CMB B-mode
search. BICEP2/Keck has reached σinst

D ∼ 10−3µK2

(BICEP2/Keck and Planck Collaborations et al. 2015).
Future experiments can go well below 10−4µK2. For
example, PRISM (André et al. 2014) has typical noise
∼ 70µK/detector/arcmin2, ∼ 200 detectors per band,
σinst
D % 3.7 × 10−5µK2(!/∆!)1/2(0.5/fsky)1/2(!/80).

Here ∆! is the width of multipole bin and fsky is the
fractional sky coverage. Other experiments such as
COrE, EPIC and LiteBIRD have similar sensitivity. We
consider a wide range of σinst

D ∈ (10−5, 10−2)µK2 to
include all these possibilities.
Frequency configuration is crucial for foreground re-

moval. We consider five configurations (S0-S4), shown
in Table 1.

• S0 is the fiducial one, with 6 bands centered at 30,
70, 100, 150, 217 & 353 GHz. This configuration is
similar to Planck. It has a wide frequency coverage,
good for both radio and foreground removal.

• S1 has 4 bands at 95, 150, 220 & 270 GHz (Keck
array-like, Grayson et al. (2016)). A major differ-
ence of S1 to S0 is the lack of low frequency bands
and hence limited capability of radio foreground
identification and removal.

1 For realistic surveys, instrumental noise varies across frequency
bands and the cut in step 2 should be replaced by some sort of
average over σinst

D
of each band. For such situation, quantitative

study has to target at each specific surveys. Since we do not expect
fundamental impacts to our method, we leave such investigation in
future works.
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study has to target at each specific surveys. Since we do not expect
fundamental impacts to our method, we leave such investigation in
future works.

2

instrumental noise.

2.1. The analytical solution for the case of no
instrument noise

Our method works on Dij(!), the Nf × Nf matrix of
cross bandpower between the i-th and j-th frequency
bands. Here i, j = 1, 2 · · ·Nf and Nf is the number of
frequencies. In thermodynamic units,

Dij(!) = fB
i f

B
j DB(!) +Dfore

ij (!) . (1)

Since we use the thermodynamic units, fB = 1. Dfore
ij is

the cross bandpower matrix of foreground. It has order
Nf , but its rank M depends on the number of indepen-
dent foreground components. Our task is to solve Eq. 1
for DB(!) of a single multipole ! bin, without assump-
tions of Dfore

ij . This may appear as a mission impossible.
However, due to two facts that Nf ×Nf matrix Dij has
only M +1 eigenvectors and that fB(ν) is known, we are
able to prove the following two key results.

• The solution to DB is unique, as long as M <
Nf .

• The analytical solution exists, given by

DB =

(

M+1
∑

µ=1

G2
µλ

−1
µ

)−1

. (2)

Here, the µ-th eigenvector ofDij is E
(µ), which has eigen-

value λµ and normalization E(µ) · E(µ) = 1. The eigen-
modes are always ranked with decreasing order in |λµ|.
Since Dij is positive definite, λµ > 0. Gµ ≡ fB · E(µ).
We prove the uniqueness of the solution and derive Eq.
2 in the appendix. Eq. 2 also proves the uniqueness of
the solution.
Eq. 2 is not straightforward to understand. However,

for the limiting case of M ≤ 2, one can solve for all
eigenmodes analytically and verify Eq. 2 by brute-force.
This equation also confirms our instinct that any fore-
ground components orthogonal to the CMB signal in the
frequency space do not interfere the B-mode reconstruc-
tion.

2.2. Natural extension to the case with instrument noise

Instrument noise adds random noise δDinst
ij on the ob-

served bandpower,

Dobs
ij ≡ Dij + δDinst

ij . (3)

Surprisingly, Eq. 2 can still be implemented in the data
analysis, with straightforward modification to account
for instrument noise.

• Step 1. We compute all Nf eigenmodes of Dobs
ij .

• Step 2. We measure DB from Eq. 2, but only using
eigenmodes with λµ > σinst

D .

Here σinst
D is the r.m.s. of instrument noise in the band-

power. For brevity, we assume that all frequency bands

Table 1
We test our ABS method against various CMB frequency

configurations and instrumental noise. σinst
D

is the r.m.s. error in
the bandpower measurement caused by instrumental noise.

Labels frequency/GHz σinst
D

/µK2

S0 30, 70, 100, 150, 217 & 353
S1 95, 150, 220 & 270
S2 35, 95, 150, 220 & 270
S3 35, 95, 150, 220, 270 & 353 (10−5, 10−2)
S4 30, 36, 43, 51, 62, 75, 90,105, 135

160, 185,200, 220, 265, 300 & 320

have identical σinst
D .1 Instrument noise not only af-

fects physical eigenmodes, but also induces unphysical
eigenmodes with eigenvalues of typical amplitude σinst

D .
Therefore we exclude eigenmodes with λµ ≤ σinst

D . This
selection criteria may not be optimal, but it already
works well as we will show later.
The above method of measuring DB, even including

the determination of M , is completely fixed by the data,
and relies on no priors of foregrounds.

3. TESTING THE ABS METHOD

Next we test the ABS method against simulated Dobs
ij

with a variety of foregrounds, instrument noise and sur-
vey frequency configurations.

3.1. Simulated observations

To generate simulated Dobs
ij , we approximate

δDinst
ij as Gaussian distributed with dispersion

σinst
D . σinst

D is a key factor in CMB B-mode
search. BICEP2/Keck has reached σinst

D ∼ 10−3µK2

(BICEP2/Keck and Planck Collaborations et al. 2015).
Future experiments can go well below 10−4µK2. For
example, PRISM (André et al. 2014) has typical noise
∼ 70µK/detector/arcmin2, ∼ 200 detectors per band,
σinst
D % 3.7 × 10−5µK2(!/∆!)1/2(0.5/fsky)1/2(!/80).

Here ∆! is the width of multipole bin and fsky is the
fractional sky coverage. Other experiments such as
COrE, EPIC and LiteBIRD have similar sensitivity. We
consider a wide range of σinst

D ∈ (10−5, 10−2)µK2 to
include all these possibilities.
Frequency configuration is crucial for foreground re-

moval. We consider five configurations (S0-S4), shown
in Table 1.

• S0 is the fiducial one, with 6 bands centered at 30,
70, 100, 150, 217 & 353 GHz. This configuration is
similar to Planck. It has a wide frequency coverage,
good for both radio and foreground removal.

• S1 has 4 bands at 95, 150, 220 & 270 GHz (Keck
array-like, Grayson et al. (2016)). A major differ-
ence of S1 to S0 is the lack of low frequency bands
and hence limited capability of radio foreground
identification and removal.

1 For realistic surveys, instrumental noise varies across frequency
bands and the cut in step 2 should be replaced by some sort of
average over σinst

D
of each band. For such situation, quantitative

study has to target at each specific surveys. Since we do not expect
fundamental impacts to our method, we leave such investigation in
future works.

Measured cross band powers 
between frequency channels

PJ Zhang et al, MNRAS 484,1616Z (2019) 
Yao et al, ApJS 848,44Z (2018)  
L. Santos et al, 2019, accepted by A&A

We proposed an analytical blind separation method (ABS)
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 Cleaning method: SMICA

• SMICA is a multi-component maximum likelihood 
spectral estimation method (Delabrouille+ 2003)

A: mixing matrix - frequency dependance of components
R: angular cross power spectra of components  

non-linear optimization problem 
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Hammurabi	X	—	the	Galactic	emission	simulator	(JX	Wang+)

simulated synchrotron Stokes Q maps with 
locally parameterized MHD magnetic turbulence

Hammurabi	X	(ApJS	247	18,	JOSS	01889)	

- Simulating	Galactic	emissions	from	
physical	Galactic	component	modelings	

- Numerically	verified	MHD	turbulence	as	
plausible	explanation	of	synchrotron	E/B	
ratio	

- Hammurabi	X	+	IMAGINE	can	pin	down	
model	parameters	with	given	Galactic	
foreground	maps,	improving	the	
understanding	of	foregrounds	

New foreground emulator 
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Constrain foreground parameters  



总结

多频段、⾼信噪⽐的极化观测对理解和扣除
前景⾄关重要！

16



Backup
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Error estimation:

• residual levels in map/Cl

• uncertainties from foregrounds

• systematic error estimation (e.g. 

atmospheric emission, gain error) 

Cleaned E/B (maps/
power spectra)

Consistency test:  
E/B at different patches 

converge to the same Cls  
E map/Cl^EE/Cl^EB consist 

with Planck?

Delensing 
important if r<0.01 


Quadratic estimator 

correlate with DESI/lensing/CIB/shear/y-map, to mitigate 
systematics and improve understanding of DE, Planck 
systematics, galaxy formation, IA, tSZ, …        

Engine: ILC/ABS/ 
Model Fitting/SEVEM/SMICA

• dirty Q/U maps

• dirty E/B maps (power spectra) with E-

B leakage 

• purified dirty E/B maps (power 

spectra) without E-B leakage 
(NaMaster/recycling/SZ…)

PySM Simulations: draw 
each component 
realizations/vary foreground 
models 

preprocessing: 
masking/smoothing 

Foreground itself provides a 
plenty of information about 
DM, tau, magnetic field

Pipeline of foreground removal 
• Input (AliCPT Q/U 

maps at 95/150 GHz) 

• Add external maps 

(PLANCK/WMAP)  
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 算法测试 — Model fitting

19

• To	do	
- Validation:	blind	test	by	mock	data	with	unknown	components	&	frequency	scalings			
- propagate	systematics	into	the	error	estimation

100 realizations



 Cleaning method: Model fitting (II) 

MCMC-based estimation
of physical parameters θ

Commander (Gibbs sampling technique) Eriksen+ 2008
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 Cleaning method: SMICA

• SMICA is a multi-component maximum likelihood 
spectral estimation method (Delabrouille+ 2003)

A: mixing matrix - frequency dependance of components
R: angular cross power spectra of components  

non-linear optimization problem 
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parametric/non-blind - model fitting  
• COMMANDER (Gibbs sampling)

non-parametric/blind - data driven  
• SMICA, ILC, SEVEM

Cross-check is important for
validation!

At least 2 foreground-removal methods to be used in AliCPT 

 Consistency check
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