Progress of BSM analyses at the CEPC Snowmass Studies

Xuai Zhuang

zhuangxa@ihep.ac.cn

24/03/2021

中國科學院為維物招為完備 Institute of High Energy Physics Chinese Academy of Sciences

New Physics beyond the SM

Snowmass & BSM Physics

■ Goal of Snowmass:

- Focus on a "set of questions" and the "scientific merits" of the various collider options and proposals
- > Develop a global picture and a future roadmap

BSM Physics

- EF08: Model specific explorations (simplified models): SUSY, composite models, extra dimensions, ...
- EF09: More general explorations: New bosons, new fermions, MET signatures, long-lived particles, EFT, ...
- EF10: Dark matter at colliders

European Strategy Report

8	Beyond the Standard Model	113
8.1	Introduction	113
8.2	Electroweak symmetry breaking and new resonances	114
8.3	Supersymmetry	118
8.4	Extended Higgs sectors and high-energy flavour dynamics ->Some Leptoquarks	125
8.5	Dark Matter	129
8.6	Feebly-interacting particles	132
8.7	Summary and conclusions	137

- SUSY is the main model considered
- Other models are more like EFT
 - Composite Higgs (EF02)
 - Contact interactions (EF09)
- Dark Matter Simplified Models (EF10)

Need to think broadly about which models to consider based on our goals (CEPC/SPPC)

Want a broad but achievable set of models

Contributions from China

- EF08-01: SUSY and Dark Matter at the CEPC, FCC_ee, and ILC (Tianjun Li; Lei Wu; Xuai Zhuang; Chengcheng Han etc.)
- EF08-02: SUSY global fits with future colliders using GAMBIT (Yang Zhang)
- EF10-01: Dark Matter: Top + jet + missing Energy (Peiwen Wu)
- EF10-02: Dark Matter: Asymmetric DM by displaced lepton jets (Mengchao Zhang)
- **EF10-03: Dark Matter: Higgs portal (Xin Shi)**
- EF10-04: Dark Matter: Lepton portal dark matter, gravitational waves and collider phenomenology (Jia Liu etc.)
- More BSM:
 - **EF02: EW Physics: Higgs Boson as a portal to new physics**
 - EF03: EW Physics: Heavy flavor and top quark physics
 - EF02-01: Electroweak Phase Transition with Exotic Higgs Decays (Shu Li)
 - EF02-02: Heavy Neutrino Search in Lepton-rich Higgs boson rare decays (Yu Gao)
 - EF03: Probing top quark FCNC couplings tqγ, tqZ at CEPC (Peiwen Wu)

SUSY Introduction

SUSY is one of the most favorite candidate for physics BSM, which can

- > provide a natural solution to the gauge hierarchy problem,
- provide DM candidate with PRC ,
- achieve gauge coupling unification,
- ▶
- However, SUSY searches at LHC have already given very strong constrains on SUSY parameters, see next slide:

Current status: EU Strategy- gaugino

ILC 500/CEPC240: discovery in all scenarios up to kinematic limit: $\sqrt{s/2}$

Current status: EU Strategy- higgsino

From Xuai Zhuang, Jiarong Yuan, Huajie Cheng Gaugino & higgsino

- Light gauginos have larger x-sec in lepton colliders with lower energy
- The naturalness conditions from the low-energy finetuning measures [1-3] generically predict the light Higgsinos

From Xuai Zhuang, Jiarong Yuan, Huajie Cheng Stau & Smuon

- In the super-natural SUSY [arXiv:1403.3099], the observed DM relic density is realized via the LSP neutralino-light stau coannihilation, LSP neutralino is Bino dominant, the sleptons are light as well
- The muon g-2 excess can be naturally explained by light smuon

From Xuai Zhuang, Jiarong Yuan, Huajie Cheng Preliminary Results

CEPC240(FCCee/ILC): discovery for gauginos up to kinematic limit: $\sqrt{s/2}$

Black
2 P
Imber
11.5 R
11.7 Q
8.06
Int
10.04
Dec
an ted
8.21 N
L L
alu
es
55
120
C-1/1
Gevi
$s \mid \rangle$
σ^2

$\begin{array}{c c} 80 \\ \hline & \\ & \\ & \\ & \\ 70 \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	PC Sim = 240 GeV e [−] →χ̃ ⁺ ₁ χ̃ ⁻ ₁	nulation /, 5050 ft $\bar{\chi}_1^{\pm} \rightarrow W$	$\tilde{\chi}_1^{-1}$ $\tilde{\chi}_1^0, W^{\pm}$	5 ⁰ →vℓ [±] (H	% Sy iggsino L	/st.	Black Numt	
60 - ^{10.6}	6 syst	Zn > 5 7.19	in the p	ohase sp	8.88 8.88	7.54	11.5 Repre	Higgsin
50 - ^{9.36}	9.8	7.07	8.77	7.51	9.19	7.92	11.7 Expe	LSP
40 -10.74	9.88	6.34	8.68	7.97	9.09	7.57	8.06 Ected Zn V	
30 -11.52	7.67	7.17	8.0	7.66	8.25	7.24	10.04 /alues	
20 -10.27	6.96	8.26	7.88	7.62	10.15	7.49	8.21	
10 <u>+07</u> 90	^{8.03} , 95			105	10.37 110	_{10.58} 115	<u>5.83</u> 120	
						μ	ι [GeV]	

From Xuai Zhuang, Jiarong Yuan, Huajie Cheng Preliminary Results

CEPC240(FCCee/ILC): discovery for slepton nearly up to kinematic limit: $\sqrt{s^2}$

From Junmou Chen, Chengcheng Han, Jinmin Yang, Mengchao Zhang Bino NLSP at CEPC

- Bino mass around 100 GeV can be probed at the 2σ (5σ) level for a slepton below 2 TeV (1.5 TeV) with a luminosity 5.6 ab⁻¹.
- For a bino mass around 10 GeV, a slepton mass less than 4.5 TeV (3.5 TeV) can be probed at the 2σ (5σ) level.
- It is much beyond the reach of the LHC for direct slepton searche

¹arXiv:1709.06371 ²arXiv:1409.3930

Aqua

conditions.

respectively

Rescaled spin-independent ($\xi \sigma SI(\chi, p)$) rate vs. LSP neutralino mass m $\tilde{\chi}_1^0$ Generalized Minimal Supergravity (GmSUGRA)

16

Light Neutralino Searches at CEPC

- The light neutralinos with large relic density may also be probed at the CEPC
- At the CEPC, the bino can be pair-produced via t- channel selecton and then bino decays into axino and photon $(\tilde{\chi}_1^0 \rightarrow \tilde{a}\gamma)$ as follows
- $e^+e^- \rightarrow \tilde{\chi}^0_1(bino) + \tilde{\chi}^0_1(bino) \rightarrow 2\tilde{a} + 2\gamma$

GmSUGRA scaning is going on

From Yang ZHANG SUSY global fits with CEPC using GAMBIT

Purpose:

- Study the impact of CEPC on global fits of the SUSY models, such as CMSSM, NUHM1, NUHM2 and pMSSM-7.
- Judge the discovery prospects and reaches of future colliders for SUSY models.
- Provide a further motivation for the construction of future electron-positron colliders.

From Yang ZHANG SUSY global fits with CEPC using GAMBIT

Method:

- Using the projected precisions for Higgs properties and assuming the results are SM-like or centering on the present SUSY best-fit point, we can build likelihoods for CEPC.
- Comparing the preferred regions and best fits with and without the likelihoods, we can estimate the prospective reaches and discovery prospects of CEPC.
- As for the preferred regions without the CEPC likelihoods, we can use the publicly available GAMBIT data.

From Yang ZHANG

Present preferred regions of CMSSM

 $\mathcal{L}_{present} = \mathcal{L}_{collider} \mathcal{L}_{DM} \mathcal{L}_{flavor} \mathcal{L}_{EWPO} ...$

Including LHC sparticle searches, LHC Higgs, LEP Higgs, ALEPH slepton, L3 slepton, L3 neutralino/chargino, OPAL chargino, $B(s) \rightarrow \mu^+ \mu^-$, Tree-level *B* and *D* decays, $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, $B \rightarrow X_s \gamma$, a_μ , *W* mass, Relic density, PICO-2L, PICO-60F, SIMPLE 2014, LUX 2015, LUX 2016, PandaX 2016, SuperCDMS 2014, XENON100 2012, IceCube 79-string, γ rays (Fermi-LAT dwarfs), ρ 0, σ_s and σ_I , $\alpha_s(m_Z)(\overline{\text{MS}})$, Top quark mass.

Progress (BF-like)

Red: 1σ CL contour lines; Blue: 2σ CL contour lines. The number of samples that we have post-processed is not enough to form confidence contours. However, it is clear that CPPC will obviously shrink the preferred regions in parameter spaces.

Curves contributed to a Snowmass report

summary plot

Dark Matter

- The BSM analyses to snowmass are going on smoothly, some analyses are in paper draft stage (gaugino, slepton, light bino etc.)
- The detailed results to be presented at Yangzhou conference
 - Paper drafts to be provided as inputs for snowmass white paper
 - **BSM physics white paper for CEPC?**

Focus and interaction with others

Snowmass Process

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: May 2019

ATL	4 <i>S</i>	Preliminar	y
-----	-------------------	------------	---

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

		Model	ℓ, γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	¹] Limit		Reference
额外维 粒子	Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ \hline 2 \ \gamma \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4 j$ $-$ $2 j$ $\geq 2 j$ $\geq 3 j$ $-$ $2 J$ $2 J$ $\geq 1 b, \geq 1J$ $\geq 2 b, \geq 3$	Yes - - - - /2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Mp 7.7 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV GKK mass 2.3 TeV GKK mass 3.8 TeV KK mass 1.8 TeV	$ \begin{split} n &= 2 \\ n &= 3 \; \text{HLZ NLO} \\ n &= 6 \\ n &= 6, \; M_D = 3 \; \text{TeV}, \; \text{rot BH} \\ n &= 6, \; M_D = 3 \; \text{TeV}, \; \text{rot BH} \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 1.0 \\ k/\overline{M}_{Pl} &= 1.0 \\ F/m &= 15\% \\ \text{Tier} \; (1,1), \; \mathcal{B}(A^{(1,1)} \to tt) = 1 \end{split} $	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
W ′, Z ′	Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqaq \text{ mode} \\ \text{HVT } V' \to WH/ZH \text{ model B} \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ B 0 \ e, \mu \\ multi-channe \\ 2 \ \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1J - 2 J el el 1 J	- - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 3.6 TeV We mass 2.93 TeV We mass 3.25 TeV We mass 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
Contact	C	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e,μ ≥1 e,μ	2 j _ ≥1 b, ≥1	– – j Yes	37.0 36.1 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
暗物质	MQ	Axial-vector mediator (Dirac DN Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DN	1) 0 e, μ DM) 0 e, μ 0 e, μ Λ) 0-1 e, μ	1 - 4 j 1 - 4 j $1 J, \le 1 j$ 1 b, 0-1 J	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	mmmed 1.55 TeV mmmed 1.67 TeV M, 700 GeV mφ 3.4 TeV	$\begin{array}{l} g_q{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 \; {\rm GeV} \\ g{=}1.0, m(\chi) = 1 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \; {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
leptoquar	ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ ⁴ mass 1.03 TeV LQ ⁴ mass 970 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
额外夸克	Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ Q \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channe multi-channe $2(SS)/\geq 3 e, \mu$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \begin{array}{l} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	j Yes j Yes j Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV	$\begin{array}{l} & \mathrm{SU}(2) \mbox{ doublet} \\ & \mathrm{SU}(2) \mbox{ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
重费米子	Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q* mass 6.7 TeV q* mass 5.3 TeV b* mass 2.6 TeV t* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
其他	Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	$1 e, \mu$ 2μ $2,3,4 e, \mu (SS)$ $3 e, \mu, \tau$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	$2 j$ $2 j$ $-$ $-$ $-$ $\sqrt{s} = 1$ full c	Yes - 3 TeV lata	79.8 36.1 36.1 20.3 36.1 34.4	N ^o mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 1.22 TeV monopole mass 2.37 TeV 10 ⁻¹ 1	$m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$ DY production, $ g = 5e$ DY production, $ g = 1g_D$, spin 1/2 Mass scale [TeV]	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Dark Matter

- Searches in the Mono-X final states: Many models constrained up to 1.6 TeV
- Searches also in the Di-Jet final states exclude up to 2.6 TeV for almost whole DM range

Lepton portal DM

The relevant Lagrangian

Y. Bai and J. Berger, 1402.6696

$$\mathcal{L}_{\chi} = y_{\ell} \bar{\chi}_{L} S^{\dagger} \ell_{R} + \text{h.c.},$$

$$\mathcal{L}_{S} = (D^{\mu} S)^{\dagger} D_{\mu} S - V (S, H),$$

$$V(H, S) = \mu_{H}^{2} |H|^{2} + \mu_{S}^{2} |S|^{2} + \lambda_{H} |H|^{4} + \lambda_{S} |S|^{4} + 2\lambda_{HS} |H|^{2} |S|^{2},$$

Pair produced S⁺S⁻ (and 100% to lepton + DM final state)

At the 240 GeV CEPC: two kinematics: On-shell: M_s < 120 GeV; Semi-off-shell: 120 < M_s < 240 GeV; e^{-} Z/γ S^{-} e^{+} S^{+} S^{+}

The semi-off-shell region: also probe the size of y_i (portal coupling)

The Higgs/Z exotic decay: another probe for y_i .

Lepton portal DM

Preliminary results

The shaded regions: existing bounds; lines: projections

Next step: the exotic decay bounds for y_{l} .

DM: Direct Detection Bounds

Cheung, Hall, Pinner, Ruderman'12, Huang, C.W.'14, Cheung, Papucci, Shah, Stanford, Zurek'14, Han, Liu, Mukhopadhyay, Wang'18

$$\sigma^{\rm SD} \propto \frac{m_Z^4}{\mu^4} \cos^2(2\beta)$$

HL-LHC: DM

Figure 1: Some representative diagrams for the pure WIMP triplet in $\gamma + E_T^{\text{miss}}$ final states. The χ^{\pm} particles decay into the stable χ_0 DM candidate and soft pions which are not reconstructed [3].

<u>ATL-PHYS-PUB-2018-038</u>

Mono-photon (SUSY, ED, DM)

e+e- \rightarrow chi_1 grav \rightarrow grav grav gamma grav: gravitino

EU Strategy- SUSY: ~g

https://arxiv.org/pdf/1910.11775.pdf

Fig. 8.6: Gluino exclusion reach of different hadron colliders: HL- and HE-LHC [443], and FCC-hh [139, 448]. Results for low-energy FCC-hh are obtained with a simple extrapolation.

EU Strategy- SUSY: ~q

All Colliders: squark projections

(R-parity conserving SUSY, prompt searches)

Fig. 8.7: Exclusion reach of different hadron and lepton colliders for first- and second-generation squarks.

EU Strategy- SUSY: ~t

All Colliders: Top squark projections

(R-parity conserving SUSY, prompt searches)

	Model ∫.	$C dt [ab^{-1}]$] √s [TeV]	Mass limit (95% CL exclusion)	Conditions
с	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	3	14	1.7 TeV	$m(\tilde{\chi}_1^0)=0$
Ŀ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} t \tilde{\chi}_1^0$ /3 body	3	14	0.85 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$
т	$ ilde{t}_1 ilde{t}_1, ilde{t}_1{ ightarrow}c ilde{\chi}_1^0$ /4 body	3	14	0.95 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) {\sim}$ 5 GeV, monojet (*)
υ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\tilde{\chi}^{\pm}/t\tilde{\chi}_1^0, \tilde{\chi}_2^0$	15	27	3.65 TeV	$m(ilde{\mathcal{X}}_1^0) {=} 0$
Η	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0/3$ -body	15	27	1.8 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$ (*)
т	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0$ /4-body	15	27	2.0 TeV	$\Delta {\sf m}(ilde{t}_1, ilde{\chi}_1^0)$ ~ 5 GeV, monojet (*)
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	15	37.5	4.6 TeV	$m(\tilde{\chi}_1^0)=0$ (**)
-FC	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0/3$ -body	15	37.5	4.1 TeV	m($ ilde{\chi}_1^0$) up to 3.5 TeV (**)
Ц	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0/4$ -body	15	37.5	2.2 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0)$ ~ 5 GeV, monojet (**)
00	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	0.75 TeV	$m(\tilde{\chi}_1^0)=0$
	$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}b\tilde{\chi}^{\pm}/t\tilde{\chi}^0_1$	2.5	1.5	0.75 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$
ö	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	2.5	1.5	(0.75 - <i>c</i>) TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0){\sim}$ 50 GeV
000	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 TeV	$m(ilde{\mathcal{X}}_1^0){\sim}350~{ m GeV}$
î,LIC ₃	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	1.5 TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0) \sim m(t)$
0	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} b \tilde{\chi}^{\pm} / t \tilde{\chi}_1^0$	5	3.0	(1.5 - <i>ϵ</i>) TeV	$\Delta m(ilde{t}_1, ilde{\chi}_1^0){\sim}$ 50 GeV
Ę	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	30	100	10.8 TeV	$m(ilde{\mathcal{X}}_1^0)=0$
-0-	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0/3$ -body	30	100	10.0 TeV	$m(\! ilde{\!\!\mathcal{X}}_1^0)$ up to 4 TeV
Ľ	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0/4$ -body	30	100	5.0 TeV	$\Delta {\sf m}(ilde{t}_1, ilde{\chi}_1^0)$ ~ 5 GeV, monojet (*)
			1	0 ⁻¹ Mass scale [TeV]	

(*) indicates projection of existing experimental searches

(**) extrapolated from FCC-hh prospects

 ϵ indicates a possible non-evaluated loss in sensitivity

MSSM charginos and neutralinos

Mass matrices

$$\begin{array}{c} \text{charginos} \\ \text{in } (\tilde{W}^{-}, \tilde{H}^{-}) \text{ basis} \\ \begin{pmatrix} M_2 & \sqrt{2}m_W c_\beta \\ \sqrt{2}m_W s_\beta & \mu \end{pmatrix} \end{pmatrix} \xrightarrow{\text{neutralinos}} \\ \begin{array}{c} \text{in } (\tilde{B}^0, \tilde{W}^0, \tilde{H}^0_1, \tilde{H}^0_2) \text{ basis} \\ \begin{pmatrix} M_1 & 0 & -m_Z c_\beta s_w & m_Z s_\beta s_w \\ 0 & M_2 & m_Z c_\beta c_w & -m_Z s_\beta c_w \\ -m_Z c_\beta s_w & m_Z c_\beta c_w & 0 & -\mu \\ m_Z s_\beta s_w & -m_Z s_\beta c_w & -\mu & 0 \end{pmatrix} \end{array}$$

 M_2 real, $M_1 = |M_1|e^{i\Phi_1}$, $\mu = |\mu|e^{i\Phi_\mu}$

At tree level:

charginos $M_2, \mu, \tan \beta$ neutralinos $+M_1$ Φ_{μ}, Φ_{1} CP phases

Expected to be among the lightest sparticles

A good starting point towards SUSY parameter determination

EWK-ino production

Mass splitting of the EWKinos depends on M1, M2, μ and tan β

	Bino LSP			Hig	igsino LS	SP	Wino LSP			
μ	higgsino		$\widetilde{\chi_3^0}, \widetilde{\chi_4^0}, \widetilde{\chi_2^\pm}$	M ₁)	$\widetilde{\chi_4^0}$	M1	bino		$\widetilde{\chi_4^0}$
M ₂	wino	_	$\widetilde{\chi}_{2}^{0},\widetilde{\chi}_{1}^{\pm}$	M ₂ win		$\widetilde{\chi_{3}^{0}}, \widetilde{\chi_{2}^{\pm}}$	μ	higgsino		$\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{2}^{\pm}$
M ₁	bino		$\widetilde{\chi_1^0}$	higgs µ	sino	$\widetilde{\chi_1^0}$, $\widetilde{\chi_2^0}$, $\widetilde{\chi_1^\pm}$	M2	wino	=	$\widetilde{\chi_1^0} \widetilde{\chi_1^\pm}$

Standard wino-bino case: large ∆m between N1 and C1/N2; → MET + hard leptons N1,N2,C1 almost degenerate: experimental challenging; → MET + soft leptons

- Lower xsec than higgsino LSP;
- → WW+MET dominant;

https://indico.cern.ch/event/687651/contributions/3400865/attachme nts/1850992/3038683/Wagner-LHCP2019.pdf

Muon Anomalous Magnetic Moment

Here \tilde{m} represents the weakly interacting supersymmetric particle masses.

For tan $\beta \simeq 10$ (50), values of $\tilde{m} \simeq 230$ (510) GeV would be preferred.

Masses of the order of the weak scale lead to a natural explanation of the observed anomaly !

CrossSections

Cross-section based on Madgraph calculation

TECHNICAL DETAIL

About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points. ILD-like detector

Software

Signal samples: MadGraph+Pythia8

Simulation: Mokka

Reconstruction: Marlin

- Normalized to 5050 fb^{-1}
- Dominant backgrounds:

> SM processes with two-e or two- μ or two- τ and large missing energy final states.

process	Cross Section [fb]
μμ	4967.58
ττ	4374.94
$WW \to \ell\ell$	392.96
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84
$\nu Z, Z \to \mu \mu$	43.33
$ZZ \rightarrow \mu\mu\nu\nu$	18.17
$\nu Z, Z \to \tau \tau$	14.57
$ZZ \rightarrow \tau \tau \nu \nu$	9.2
$\nu\nu H, H \to \tau\tau$	3.07
$e\nu W, W ightarrow \mu \nu$	429.2
$e\nu W, W \to \tau \nu$	429.42
$eeZ, Z \rightarrow \nu\nu$	29.62
$eeZ, Z \to \nu\nu \ or \ e\nu W, W \to e\nu$	249.34

SIGNAL SAMPLES

GAUGINO SEARCH

Bino LSP

60 80

100 120 140

20 40

160

180 200

M_{recoil}

Higgsino LSP

P^μ_T

GAUGINO SEARCH

 ${ ilde \chi}_1^\pm \, W^\pm$

 e^{\pm}

CEPC240(FCCee/ILC): discovery in all scenarios up to kinematic limit: $\sqrt{s/2}$

SLEPTON SEARCH

SLEPTON SEARCH

CEPC240(FCCee/ILC): discovery up to kinematic limit: $\sqrt{s/2}$

$$Zn = \left[2\left((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)}\right] \right) \right]^{1/2}$$

Light Neutralino from GmSUGRA (preliminary results)

Gray points satisfy REWSB and neutralino as LSP conditions. Dark green points satisfy additional spartcile mass and B-physics bounds including $m_h = 125 \pm 3 \,\text{GeV}$ bounds.

3 / 1

590

◆□ →

Light Neutralino from GmSUGRA (preliminary results)

Gray points satisfy REWSB and neutralino as LSP conditions. Dark green points satisfy additional spartcile mass and B-physics bounds including $m_h = 125 \pm 3 \,\text{GeV}$ bounds.

Light Neutralino from GmSUGRA (preliminary results)

Gray points satisfy REWSB and neutralino as LSP conditions. (Left) Blue, green and orange points satisfy spartcile mass and B-physics bounds including $m_h = 125 \pm 3 \,\text{GeV}$ bounds respresent bino-component, wino-component and higgsino-components respectively.(Right) Blue points show bino-type neutralino solutions and green points represent wino-dominant solutions.

Point 1Point 2Point 3Point 4m01387143914491537m21280.813161358.31404.1
m01387143914491537m21280.813161358.31404.1
<i>m</i> _č 1280.8 1316 1358.3 1404.1
(.)
$m_{\tilde{l}lc}$ 1748.5 1851.1 1765.8 1981.3
$m_{\tilde{D}c}$ 1790.6 1857.7 1715.7 1945.9
$m_{\tilde{l}}$ 19.8 140 912.9 475.7
$m_{\tilde{E}C}^{L}$ 472.6 192.6 756.2 132.2
M_1^L 0.1588 1.822 96.81 132.6
M_2 790.9 1015 812.9 1023
<i>M</i> ₃ -1186 -1517.9 -977.33 -1203
$A_t = A_b$ 3944 3693 3632 4981
A_{τ} 241 -536.3 -403.1 -238.2
tan β 28.3 34.7 17.6 21.3
$m_{H_{u}}$ 673.5 836.3 2631 3284
m_{H_d} 1193 647.3 2618 3284
m _h 123 122 123 125
$m_{H,A}$ 1582,1572 1394, 1385 2515,2499 3060,3040
$m_{H^{\pm}}$ 1585 1397 2516 3061
$m_{\tilde{g}}$ 2638 3297 2220 2676
$m_{\tilde{\chi}^0_{1,2}}$ 5.84,682 8.8, 878 45.9,326 62,355
$m_{\tilde{v}0}^{\Lambda_{1,2}}$ 2152, 2152 2461,2461 337, 712 363, 882
$m^{3,4}$ m + 684, 881 2155, 2462 333,704 362,876
$\tilde{\chi}_{1,2}$
$m_{\tilde{u}_{L,R}}$ 2625,2832 3165,3342 2374,2542 2752,2975
$m_{\tilde{t}_{1,2}}$ 1838, 2056 2394,2607 1173, 1731 1069,1811
$m_{\tilde{d}_{I,R}}$ 2627, 2880 3166, 3388 2375,2561 2753, 3016
$m_{\tilde{b}_{1,2}}^{2,}$ 1957, 2500 2447,2813 1717 ,2433 1812,2777
$m_{\tilde{\nu}_{(1,2),3}}$ 437, 434 549,522 978, 935 670, 532
$m_{\tilde{e}_{L,R}}$ 447, 574 550, 546 984,909 683,
$m_{\tilde{ au}_{1,2}}$ 356,618 265,627 816, 941 264,549
$\sigma_{SI}(\text{pb}) = 3.151 \times 10^{-13} = 3.98 \times 10^{-13} = 8.05 \times 10^{-11} = 7.33 \times 10^{-11}$
$\Omega_{CDM} h^2$ 574 86 0.11 0.103

CMSSM/mSUGRA

- SUSY is broken by gravity
- Assume universal masses at GUT scale:
 - *m*₀ common mass of scalars (squarks, sleptons, Higgs bosons)
 - *m*_{1/2} common mass of gauginos and higgsinos
 - A_0 common trilinear coupling
 - tan β ratio of Higgs vacuum expectation values
 - sign(µ) = ± 1 − sign of µ SUSY conserving Higgsino mass parameter

$$-2\mathcal{L}_{\rm CEPC} = \frac{(m_h^{SUSY} - m_h^{obs})^2}{(\Delta_h)^2} + \sum_{i=f,V,...} \frac{(\mu_i^{SUSY} - \mu_i^{obs})^2}{(\Delta_{\mu_i})^2},$$

where $\mu_i^{SUSY} = (\sigma_i \times Br_i)_{SUSY} / (\sigma_i \times Br_i)_{SM}$. Δ_h is dominated by theoretical uncertainties, which we take 2 GeV. Δ_{μ_i} is taken from CEPC CDR.

We have two choices of m_h^{obs} and μ_i^{obs} :

- SM-like. $m_h^{obs} = 125.1$ GeV and $Br_{h \to b\bar{b}} = 57.8\%$, $Br_{h \to W^+W^-} = 21.6\%$, ...
- Centering on the present SUSY best-fit point(BF-like). $m_h^{obs} = 125.0 \text{ GeV}$ and $Br_{h \rightarrow b\bar{b}} = 61.9\%$, $Br_{h \rightarrow W^+W^-} = 20.8\%$, ...

Progress (BF-like)

We have post-processed some of the GAMBIT CMSSM data with \mathcal{L}_{CEPC} . With in the present preferred regions, \mathcal{L}_{CEPC} changes dramatically. Only small amounts of samples are with 2σ CL region ($-2\Delta \log \mathcal{L} < 6.18$). This means that CEPC could exclude most of CMSSM samples preferred by present experimental results.

Progress (SM-like)

Results using SM-like values as central values of CEPC predictions. Conclusion is similar to that of using BF-like central values.

55

Progress (SM-like)

Red: 1σ CL contour lines; Blue: 2σ CL contour lines.