Same-Sign Dilepton Signature in the Inert Doublet Model

Zhi-Long Han

School of Physics and Technology, University of Jinan

July 20, 2021

Based on CPC(2021) 073114, arXiv:2101.06862

Zhi-Long Han (UJN)

SSDL Signature in IDM

July 20, 2021 1/20

• • • • • • • • • • •

Introduction

Particle Dark Matter – WIMPs are the best-motivated candidates.

★ Scalar Singlet [1306.4275] * Inert Doublet [0906.1609]

IDM – SM Higgs Doublet + Inert Higgs Doublet(Z₂ symmetry)

* $h, H^{\pm}, A, H(\mathsf{DM})$

- Parameter Space of IDM relic density, direct, indirect detection,...
 - Low mass region: 55~75 GeV
 - High mass region: >500 GeV
- Collider Signature of IDM :
 - LHC: dilepton [0909.3094], trilepton [1005.0090]
 - *e*⁺*e*⁻ collider: dilepton [1811.06952]

< ロ > < 同 > < 回 > < 回 >

Motivation

Production of $H^{\pm}H^{\pm}$ via VBF at LHC [1906.09101]

At high energies $\sqrt{s} \gg M_W$, the amplitude is

$$\mathcal{M}(W^{\pm}W^{\pm} \rightarrow H^{\pm}H^{\pm}) \simeq 2(m_A^2 - m_H^2)/v^2$$

The Inert Doublet Model

SM Higgs doublet H_1 + an inert Higgs doublet H_2

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(\nu + h + iG^0) \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(H + iA) \end{pmatrix}, \quad (1)$$

The Higgs potential under the exact Z_2 symmetry is

$$V = \mu_1^2 H_1^{\dagger} H_1 + \mu_2^2 H_2^{\dagger} H_2 + \lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + \text{h.c.} \right].$$
(2)

Masses of scalars are

$$m_h^2 = -2\mu_1^2 = 2\lambda_1 v^2$$
, $m_H^2 = \mu_2^2 + \frac{1}{2}(\lambda_3 + \lambda_4 + \lambda_5)v^2$ (3)

$$m_{H^{\pm}}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$$
, $m_A^2 = \mu_2^2 + \frac{1}{2}(\lambda_3 + \lambda_4 - \lambda_5)v^2$ (4)

Free parameters set $\{m_H, m_A, m_{H^{\pm}}, \lambda_2, \lambda_L\}, \lambda_L = (\lambda_3 \pm \lambda_4 \pm \lambda_5)/2$

Zhi-Long Han (UJN)

Constraints

• Perturbativity:

$$|\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5| \le 4\pi.$$
(5)

• Vacuum stability:

 $\lambda_1 > 0, \lambda_2 > 0, \lambda_3 + 2\sqrt{\lambda_1\lambda_2} > 0, \lambda_3 + \lambda_4 - |\lambda_5| + 2\sqrt{\lambda_1\lambda_2} > 0.$ (6)

Global minimum:

$$\frac{\mu_1^2}{\sqrt{\lambda_1}} \le \frac{\mu_2^2}{\sqrt{\lambda_2}}.\tag{7}$$

Unitarity: valid up to about 10 TeV [1503.03085]

$$m_A - m_H \lesssim 300 \text{ GeV}, \ m_{H^{\pm}} - m_H \lesssim 300 \text{ GeV}.$$
 (8)

• Electroweak precision tests:

$$S = 0.06 \pm 0.09, \ T = 0.01 \pm 0.07, \tag{9}$$

with correlation coefficient +0.91.

Zhi-Long Han (UJN)

SSDL Signature in IDM

July 20, 2021 5/20

Gauge boson widths:

$$m_{A,H} + m_{H^{\pm}} > m_W, \ m_A + m_H > m_Z, \ 2m_{H^{\pm}} > m_Z.$$
 (10)

Collider searches: supersymmetric particles at LEP

$$m_A \le 100 \text{ GeV}, \ m_H \le 80 \text{ GeV}, \ m_A - m_H \ge 8 \text{ GeV}$$
 (11)

when the above conditions are satisfied simultaneously.

$$m_{H^{\pm}} \ge 70 \text{ GeV} \tag{12}$$

*Dilepton and trilepton signal at LHC

$$pp \rightarrow AH \rightarrow ZHH \rightarrow l^+l^- + \not{E}_T$$
 (13)

$$pp \rightarrow H^{\pm}A \rightarrow W^{\pm}H + ZH \rightarrow l^{\pm}l^{+}l^{-} + E_{T}$$
 (14)

July 20, 2021 6/20

Constraints

• SM Higgs data: When $m_H < m_h/2$, Higgs invisible decay $h \rightarrow HH$

$$\mathsf{BR}(h \to \mathsf{invisible}) < 0.24. \tag{15}$$

The charged scalar H^{\pm} will also impact $h \rightarrow \gamma \gamma$

$$\mu_{\gamma\gamma} = 1.14^{+0.38}_{-0.36}.\tag{16}$$

Relic density: Planck result

$$\Omega h^2 = 0.1200 \pm 0.0012. \tag{17}$$

• Direct detection: XENON1T [1805.12562]

We randomly scan the the low mass region

$$m_H \in [50, 80] \text{ GeV}, \ \lambda_L \in [-0.04, 0.04], \ \lambda_2 \in [0, 1]$$
 (18)
 $m_A - m_H \in [0, 300] \text{ GeV}, \ m_{H^{\pm}} - m_H \in [0, 300] \text{ GeV}$

DM Parameter Space in Low Mass Region

The gray points satisfy the constraints discussed from Eqn 5 to Eqn 17, but are excluded by XENON1T. The green and red points are allowed by all constraints. The red points are the benchmark points.

A D b 4 A b

DM Parameter Space in Low Mass Region

Same as previous figure. The light blue band in panel d corresponds to the promising region of the opposite-sign dilepton signature.

Zhi-	Long	Han ((UJN)
	- 3		/

DM Benchmark Points

No.	$m_H(\text{GeV})$	$m_A(\text{GeV})$	$m_{H^{\pm}}(\text{GeV})$	λ_2	λ_L	Ωh^2	σ @14TeV (fb)	σ @27TeV (fb)
BP1	71.69	107.5	139.6	0.4097	0.002203	0.1210	0.054	0.160
BP2	59.30	119.1	136.3	0.09806	-0.0004655	0.1213	0.154	0.451
BP3	71.67	152.9	167.0	0.1750	0.0001029	0.1233	0.214	0.657
BP4	71.76	177.0	190.9	0.3855	-0.0002066	0.1180	0.285	0.914
BP5	62.64	180.5	189.1	0.7473	-0.002478	0.1177	0.355	1.139
BP6	70.82	201.1	206.8	0.8602	0.002879	0.1233	0.373	1.232
BP7	60.37	199.7	208.8	0.6200	-0.0002771	0.1210	0.409	1.351
BP8	71.63	220.8	229.1	0.5264	-0.0007215	0.1193	0.399	1.362
BP9	61.12	223.2	230.3	0.4692	-0.0002002	0.1227	0.454	1.553
BP10	57.76	230.7	244.3	0.9192	0.0009435	0.1185	0.454	1.578
BP11	71.44	258.6	269.0	0.6848	-0.0007471	0.1214	0.446	1.616
BP12	71.55	272.6	277.1	0.00294	-0.001236	0.1205	0.483	1.765
BP13	56.40	261.4	273.1	0.5082	-0.001733	0.1191	0.495	1.799
BP14	71.17	290.1	301.2	0.5216	0.0006213	0.1200	0.467	1.788
BP15	70.72	299.9	317.8	0.7495	0.001944	0.1235	0.451	1.755
BP16	71.12	312.9	322.7	0.04812	0.0002456	0.1221	0.482	1.892
BP17	71.39	321.4	334.9	0.7437	-0.0001886	0.1172	0.468	1.883
BP18	71.31	329.1	350.8	0.1182	-0.0005298	0.1204	0.441	1.813
BP19	62.32	334.6	346.0	0.2196	0.0001064	0.1180	0.498	2.037
BP20	71.14	360.8	366.8	0.1079	0.0005207	0.1192	0.495	2.087

 σ denotes the cross section of $pp \rightarrow H^{\pm}H^{\pm}jj$ with preselection cuts

 $\eta_{j_1} \times \eta_{j_2} < 0, \ |\Delta \eta_{jj}| > 2.5.$

Zhi-Long Han (UJN)

SSDL Signature in IDM

July 20, 2021 10/20

(19)

Production Cross Section

Figure: Production cross section of process $pp \rightarrow H^{\pm}H^{\pm}jj$ at the $\sqrt{s} = 14$ TeV HL-LHC (left panel) and the $\sqrt{s} = 27$ TeV HE-LHC (right panel) as a function of $m_{H^{\pm}}$ with $\Delta m = 100$ GeV, 200GeV, 300GeV, respectively. Here, we also fix $m_H = 62$ GeV.

The same-sign dilepton signature

 $pp \to H^{\pm}H^{\pm}jj \to (W^{\pm}H)(W^{\pm}H)jj \to (l^{\pm}\nu)H(l^{\pm}\nu)Hjj \to l^{\pm}l^{\pm}\not{E}_{T}jj \quad (20)$

Branching Ratio of H^{\pm}

Figure: Branching ratio of the charged scalar H^{\pm} for $m_{H^{\pm}} - m_A = 30$ GeV (left panel) and $m_{H^{\pm}} - m_A = 15$ GeV (right panel), where m_H is fixed to be 62 GeV in both cases. The package **2HDMC** is used for calculating these branching ratios.

< A >

Distribution of P_T^l and ΔP_T at LHC

 ΔP_T is defined as $\Delta P_T = (P_T^{l_1} + P_T^{l_2}) - (P_T^{j_1} + P_T^{j_2})$ • Cuts-1 on the same-sign dilepton

$$N(l^{\pm}) = 2, P_T^{l^{\pm}} > 20 \text{ GeV}, |\eta_{l^{\pm}}| < 2.5,$$
 (21)

Cuts-2 on the forward jet pair

$$N(j) \ge 2, P_T^j > 30 \text{ GeV}, |\eta_j| < 5, N(b) = 0.$$
 (22)

Distribution of $\overline{\Delta \eta}_{jl}$ and z_l^* at LHC

 $\overline{\Delta\eta}_{il}$ and z_l^* are defined as

$$\overline{\Delta \eta}_{jl} = \sqrt{\sum_{m=1}^{2} \sum_{n=1}^{2} \frac{(\eta_{jm} - \eta_{ln})^2}{4}}, z_l^* = \left| \eta_l - \frac{\eta_{j1} + \eta_{j2}}{2} \right| / |\eta_{j1} - \eta_{j2}|.$$
(23)

Zhi-Long Han (UJN)

July 20, 2021 14/20

э

< 17 ▶

Distribution of E_T and M_{T2} at LHC

Cuts-3 we adopted are

$$\Delta P_T > 0, \ \overline{\Delta \eta}_{jl} > 3, \ \max(z_l^*) < 0.3.$$
(24)

Cuts-4 we adopted are

$$\not E_T > 100 \text{ GeV}, M_{T2} > 100 \text{ GeV}.$$
 (25)

Cut Flow Table for HL-LHC

Cross section (fb)	BP10	BP15	BP20	W [±] W [±] jj	WZjj	Others
Preselection	1.88×10^{-2}	1.89×10^{-2}	2.04×10^{-2}	1.35×10^{1}	5.50×10^{1}	3.05×10^{0}
$N(l^{\pm}) = 2, P_T^{l^{\pm}} > 20 \text{ GeV}$						
$ \eta_{l^{\pm}} < 2.5$	1.01×10^{-2}	1.08×10^{-2}	$1.19 imes 10^{-2}$	$5.29 imes 10^0$	$6.43 imes 10^0$	$3.66 imes 10^{-1}$
$N(j) \ge 2, P_T^j > 30 \text{ GeV}$						
$ \eta_j < 5, N(b) = 0$	8.62×10^{-3}	$9.13 imes 10^{-3}$	$1.02 imes 10^{-2}$	$4.60 imes 10^0$	$5.43 imes10^{0}$	$2.05 imes 10^{-1}$
$\Delta P_T > 0, \overline{\Delta \eta}_{il} > 3$						
$\max(z_l^*) < 0.3$	$1.56 imes 10^{-3}$	$2.48 imes 10^{-3}$	$3.06 imes 10^{-3}$	$1.34 imes 10^{-1}$	2.834×10^{-2}	1.12×10^{-3}
$\not \! E_T > 100 \text{ GeV}$						
$M_{T2} > 100 \text{ GeV}$	3.71×10^{-4}	8.41×10^{-4}	1.33×10^{-3}	7.31×10^{-4}	1.10×10^{-4}	8.87×10^{-5}
Significance	0.67	1.52	2.39	_	_	_

Table: Cut flow table for BP10, BP15, BP20 signal and various background process at $\sqrt{s} = 14$ TeV. The significance S/\sqrt{B} is calculated by assuming an integrated luminosity $\mathcal{L} = 3$ ab⁻¹.

Zhi-Long Han (UJN)

Distribution of E_T and M_{T2} at HE-LHC

We adopt the same criteria as 14 TeV for cuts-1 to cuts-3. Meanwhile we slightly tight cuts-4 as

$$E_T > 110 \text{ GeV}, M_{T2} > 125 \text{ GeV}.$$
 (26)

July 20, 2021 17/20

Cut Flow Table for HE-LHC

Cross section(fb)	BP10	BP15	BP20	W [±] W [±] jj	WZjj	Others
Preselection	6.57×10^{-2}	7.40×10^{-2}	8.59×10^{-2}	4.61×10^{1}	1.95×10^{2}	1.38×10^{1}
$N(l^{\pm}) = 2, P_T^{l^{\pm}} > 20 \text{ GeV}$						
$ \eta_{l^{\pm}} < 2.5$	3.19×10^{-2}	3.77×10^{-2}	$4.54 imes 10^{-2}$	1.47×10^{1}	$1.95 imes 10^1$	$1.32 imes 10^{0}$
$N(j) \ge 2, P_T^j > 30 \text{ GeV}$						
$ \eta_j < 5, N(b) = 0$	2.49×10^{-2}	$3.06 imes 10^{-2}$	$3.74 imes 10^{-2}$	1.13×10^{1}	$1.58 imes 10^1$	$8.67 imes 10^{-1}$
$\Delta P_T > 0, \overline{\Delta \eta}_{jl} > 3$						
$\max(z_l^*) < 0.3$	6.13×10^{-3}	9.74×10^{-3}	$1.23 imes 10^{-2}$	$4.94 imes 10^{-1}$	1.21×10^{-1}	4.33×10^{-3}
$\not \! E_T > 110 \text{ GeV}$						
$M_{T2} > 125 \text{ GeV}$	$5.58 imes 10^{-4}$	2.09×10^{-3}	3.72×10^{-3}	2.79×10^{-3}	3.90×10^{-4}	0
Significance	1.21	4.54	8.08	—	_	_

Table: Cut flow table for BP10, BP15, BP20 signal and various background process at $\sqrt{s} = 27$ TeV. The significance S/\sqrt{B} is calculated by assuming an integrated luminosity $\mathcal{L} = 15$ ab⁻¹.

Zhi-Long Han (UJN)

Significance of 20 BPs

Figure: Significance of all twenty BPs at $\sqrt{s} = 14$ TeV, $\mathcal{L} = 3$ ab⁻¹(red points) and $\sqrt{s} = 27$ TeV, $\mathcal{L} = 15$ ab⁻¹(green points).

Zhi-Long Han (UJN)

SSDL Signature in IDM

July 20, 2021 19/20

• • • • • • • • • • • •

Conclusion

- We perform a random scan over the low mass region of IDM, and find three viable parameter space $m_H \lesssim m_h/2, m_H \sim 71.5 \text{ GeV}, m_A - m_H \sim 8 \text{ GeV}$ with $m_H \sim 65 \text{ GeV}$
- E_T and M_{T2} are efficient cuts to suppress background.
- The same-sign dilepton signature is not promising at $\sqrt{s}=14~{\rm TeV}$ HL-LHC
- This signature is promising at $\sqrt{s} = 27$ TeV with the viable region

$$250 \text{ GeV} \lesssim m_{H^{\pm}} - m_H \lesssim 300 \text{ GeV}$$

• This signature is promising for large mass splitting $\Delta m = m_A - m_H$, which is complementary to the well studied opposite-sign dilepton signature.

イロト イポト イヨト イヨト 二日