

Stellar limits on a light scalar

Yongchao Zhang (张永超)

Southeast University

July 19, 2021 第十五届TeV物理工作组学术研讨会,北京

based on

Dev, Mohapatra & YCZ, JCAP**05**(2021)014 [2010.01124] Dev, Mohapatra & YCZ, JCAP**08**(2020)003 [2005.00490] Dev, Fortin, Harris, Sinha & YCZ, 210x.abcde Balaji, Dev & YCZ, 21yy.abcde

Multimessage universe: Light particles in the stars

Figure: Basic stellar evolution

- High stellar density (in the core);
- Unique environment to produce copiously light (BSM) particles;
- Raffelt criterion: the energy loss due to new particles can not exceed that observed from photon/neutrino emission [Raffelt '96];
- One of the multi-messengers to probe the stars: complementary to detection of neutrinos/GRs/GWs in some cases...

Yongchao Zhang (SEU)

Why light CP-even scalar?

Some hypothetical light particles:

- axion, axion-like particle (ALP);
- Majoron: couplings to neutrinos (and other fermions);
- dark photon, Z' boson;
- CP-even scalar S: dilaton, saxion (from supersymmetric theorey)...
- light sterile neutrino

• ...

Couplings of S:

- from mixing with SM Higgs $(\sin \theta)$;
- leptonic scalar.

Production of S in supernova core: $T \sim O(10 \text{ MeV})$

Figure: $N + N + S \rightarrow N + N$

• Two contributions: *SNN* coupling + $S\pi\pi$ coupling

$$\begin{split} \mathcal{L} &= \sin\theta S \left[y_{hNN} \overline{N} N + A_{\pi} (\pi^0 \pi^0 + \pi^+ \pi^-) \right] \,, \\ y_{hNN} &\sim 10^{-3} \,, \quad \mathcal{A}_{\pi} \;=\; \frac{2}{9 v_{\rm EW}} \left(m_S^2 + \frac{11}{2} m_{\pi}^2 \right) \sim 10^{-3} m_{\pi} \,, \end{split}$$

Cancellation at the leading order

• To the LO of $m_S^2/m_N E_S$:

$$\begin{split} \mathcal{M}_a + \mathcal{M}_b + \mathcal{M}_c + \mathcal{M}_d &\simeq 0 \,, \\ \mathcal{M}_{a'} + \mathcal{M}_{b'} + \mathcal{M}_{c'} + \mathcal{M}_{d'} &\simeq 0 \,. \end{split}$$

• Expand to the NLO of $m_S^2/m_N E_S$:

$$rac{1}{(p_i \pm k_S)^2 - m_N^2} \simeq rac{1}{\pm 2m_N E_S + m_S^2} \simeq rac{1}{\pm 2m_N E_S} \left[1 \mp rac{m_S^2}{2m_N E_S}
ight]$$

- The contributions of the SNN diagrams to production rate will be suppressed by the ratio of $(m_S/E_S)^4$ in the limit of small m_S .
- Including all high order terms will reduce the $a^{(\prime)}$ through $d^{(\prime)}$ diagram amplitudes by a factor of 1/2 [Dev, Fortin, Harris, Sinha & YCZ, 210x.abcde].

Comparison of different contributions

Figure:
$$T = 30$$
 MeV, $n_B = 1.2 \times 10^{38}$ cm⁻³, sin $\theta = 10^{-6}$

• \mathcal{I}_A : SNN diagrams:

$$\propto y_{hNN}^2 \left(\frac{m_S}{E_S}\right)^4 \iff \text{ cancellation}$$

• \mathcal{I}_B : $S\pi\pi$ diagrams:

$$\propto \left(\frac{m_N}{v_{\rm EW}}\right)^2 \left[\left(\frac{m_S}{T}\right)^2 \left(\frac{T}{m_N}\right) + \frac{11}{2}\frac{m_\pi^2}{m_N T}\right]^2$$

• \mathcal{I}_C : always in between \mathcal{I}_A and \mathcal{I}_B .

Decay & re-absoprtion of S

Figure: T = 30 MeV, $n_B = 1.2 \times 10^{38} \text{ cm}^{-3}$

- S decays mostly into e^+e^- or $\mu^+\mu^-$ (for $m_S\gtrsim 2m_\mu$)
- Re-absorption of S via the process \Rightarrow MFP of S

$$N + N + S \rightarrow N + N$$

Supernova luminosity limits on S

Figure: T = 30 MeV, $n_B = 1.2 \times 10^{38}$ cm⁻³, $R_c = 10$ km

- Purple (orange) regions: luminosity limit of $5(3) \times 10^{53}$ erg/sec;
- Meson decay: FCNC decays $K \to \pi + X$, $B \to K(\pi) + X$, with $X = ee, \ \mu\mu, \ \gamma\gamma$, missing energy;
- The supernova limits can be improved at JUNO, DUNE, IceCube-DeepCore & Hype-Kamiokande.

Production channels of *S* in the $T \sim \text{keV}$ stars

Compton-like process

• Breamsstrahlung processes

• Primakoff-like process

• Plasma effect: For $m_S \lesssim w_p \simeq \sqrt{n_e e^2/m_e} < T$, S can be produced resonantly from mixing with longitudinal mode of photon [Hardy & Lasenby, JHEP 02(2017)033 [1611.05852]].

Comparison of these channels

- e N bremsstrahlung: $y_N \sim 10^{-3}$;
- Compton: $y_e \sim 10^{-6}$;
- Primakoff: suppressed by loop-level $S\gamma\gamma$ coupling;
- Plasma: $\propto y_e^2$, suppressed by small Yukawa coupling

Comparing the bremsstrahlung channels

e - N brem vs. π -mediated N - N brem (γ -mediated even smaller)

$$rac{Q_{
m B}^{(NN)}}{Q_{
m B}^{(eN)}} \sim rac{(2m_N/m_\pi)^4 A_N^4 f_{pp}^4}{e^4} rac{m_e^2}{m_N^2} rac{T^4}{m_\pi^4} rac{m_S^2}{m_N^2} \ll 1 \,.$$

- First factor: couplings;
- m_e^2/m_N^2 : phase space;
- T^4/m_{π}^4 : propagators;
- m_S^2/m_N^2 : cancellation effect for N N brem process.

Dominant production channel: e - N bremsstrahlung process!

$$\begin{array}{ll} Q_{\rm B}^{(eN)} &\simeq & \Big(\sum_{i} Z_{N_i}^2 A_{N_i}^2 n_{N_i}\Big) \frac{\alpha^2 y_N^2 \sin^2 \theta T^{1/2} n_e}{\pi^{3/2} m_e^{3/2}} \times \mathcal{O}(1) \ \text{factor} \\ & \times P_{\rm decay} P_{\rm abs} \end{array}$$

MFP of S in the stars

Limits on S from Sun, RGs, WDs & HB stars

Neutron-star merger: $T \sim \mathcal{O}(10 \,\mathrm{MeV})$

Figure: GWs from NS merger have been observed in LIGO/Virgo!

Neutron-star merger: MFP of S

Including the nuclear EoS.

Neutron-star merger: MFP of S

Including the nuclear EoS.

Cooling time

Can be compared to lifetime of NS merger remnants. [Baiotti & Rezzolla '16 Rept. Prog. Phys.; Lucca & Sagunski '20 JHEAp]

Conclusion

- Light CP-even scalars can be produced abundantly in the compact stars.
- Supernovae can exclude the parameter space of m_S up to roughly 100 MeV and mixing angle roughly 10^{-7} to 10^{-5} .
- For scalar S mixing with the SM Higgs, the $T \sim \text{keV}$ stars (Sun, red giants, white dwarf & horizontal-branch stars) can exclude a large parameter space, with m_S up to roughly 280 keV, and $\sin \theta$ down to 10^{-18} .
- Neutron star merger limits on *S* depend largely on stellar temperature and density (still working on it).
- These limits can be largely improved in future precision cosmological & astrophysical observations, and are largely complementary to other probes of stars such as photons & GWs.

Thank you very much!

Future prospects

Bollig, DeRocco, Graham & Janka '20 PRL; Croon, Elor, Leane & McDermott '21 JHEP We are implementing the effects from

- supernova profiles;
- muons in supernovae and neutron stars;
- SZ'Z' gauge interaction.

Figure: Preliminary limits on S including supernova profiles.

Yongchao Zhang (SEU)

backup slides

Emission rate of S

Energy emission rate per unit volume in the supernova core:

[Dent, Ferrer & Krauss '12]

$$Q = \int \mathrm{d}\Pi_5 S \sum_{\mathrm{spins}} |\mathcal{M}|^2 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4 - k_5) E_5 f_1 f_2 P_{\mathrm{decay}} P_{\mathrm{abs}} ,$$

- $\mathrm{d}\Pi_5$: \qquad 5-body phase space
 - S: symmetry factor for (non-)identical particles
- $f_{1,2}(\mathbf{p})$: non-relati $P_{\text{decay}} = \exp\{-R_c\Gamma_S\}$: decay fac $P_{\text{abs}} = \exp\{-R_c/\lambda\}$: re-absorp
- non-relativistic Maxwell-Boltzmann distribution decay factor,
 - re-absorption factor due to $N + N + S \rightarrow N + N$ [λ : mean free path (MFP)]

Re-absorption of S and MFP

Inverse MFP due to the process $N + N + S \rightarrow N + N$:

[Giannotti & Nesti '05; Burrows, Ressell & Turner '90]

$$\begin{split} \lambda^{-1}(E_S) &\equiv \frac{1}{2E_S} \frac{d\mathcal{N}_S(-k_S)}{d\Pi_S} \\ &= \frac{1}{2E_S} \int d\Pi_4 \mathcal{S} \sum_{\text{spins}} |\mathcal{M}'|^2 (2\pi)^4 \delta^4(p_1 + p_2 - p_3 - p_4 + k_S) f_1 f_2 \,, \end{split}$$

- \mathcal{N}_S : number production rate of S per unit volume
- $d\Pi_S$: phase space of S
- $d\Pi_4$: 4-body phase space for N
 - S : symmetry factor for (non-)identical particles
- $f_{1,2}(\mathbf{p})$: non-relativistic Maxwell-Boltzmann distribution