

The anomalous Zbb couplings at the LHC and ep colliders

Bin Yan Los Alamos National Laboratory

15th TeV Physics workshop July 19-22, 2021

Bin Yan, C.-P. Yuan, arxiv:2101.06261 (Accepted by PRL) Bin Yan, Zhite Yu and C.-P. Yuan, arxiv: 2107.02134 (Submitted to PRL) 1

Status of Zbb couplings

Gfitter Group: EPJC74 (2014)3046

$$R_b = \frac{\Gamma(Z \to b\bar{b})}{\sum_q \Gamma(Z \to q\bar{q})}$$

$2.5\sigma~$ deviation with SM prediction

D. Choudhury, T. M. P. Tait, C.E.M. Wagner, PRD 65(2002)053002

$$\mathcal{L} \supset rac{g}{c_W} Z_\mu (g_{Lb} \overline{b}_L \gamma^\mu b_L + g_{Rb} \overline{b}_R \gamma^\mu b_R)$$

 $g_{Lb} < 0$ was Excluded

 g_{Rb} Could be positive and negative

Status of Zbb couplings

 $\mathcal{L} \supset \frac{g}{c_W} Z_\mu (g_{Lb} \bar{b}_L \gamma^\mu b_L + g_{Rb} \bar{b}_R \gamma^\mu b_R) = \text{S. Gori, J. Gu, L. T. Wang, JHEP04(2016)062}$

Strong constraint for the left-handed Zbb coupling and large deviation of the right-handed Zbb coupling

Status of Zbb couplings

A. How to break the degeneracy of the right-handed Zbb coupling?

New experiments: e.g. CEPC

- B. How to explain the LEP data?
 - New Physics? Many new physics models
 - e.g. Custodial symmetry O(3)+heavy quark

K. Agashe, R. Contino, L. Rold, A. pomarol, 2006'

Statistical Fluctuation or Systematic error? New experiments: e.g. CEPC

Zbb couplings@ future colliders

$$\mathcal{L} \supset \frac{g}{c_W} Z_\mu (g_{Lb} \bar{b}_L \gamma^\mu b_L + g_{Rb} \bar{b}_R \gamma^\mu b_R)$$

S. Gori, J. Gu, L. T. Wang, JHEP04(2016)062

The degeneracy of right-handed Zbb coupling could be broken by scanning the energy

Should we wait for the next generation lepton colliders?

The possibility of LHC and ep colliders (HERA and EIC)?

A. Zbb couplings@LHC

charge conjugation invariance:

(1)Only axial vector components will contribute to the cross section;(2)Only top and bottom quark will contribute to the scattering

$$\mathcal{L} = \frac{g_W}{2c_W} \bar{b} \gamma_\mu (\kappa_v^b v_b^{\text{SM}} - \kappa_a^b a_b^{\text{SM}} \gamma_5) b Z_\mu + \frac{m_Z^2}{v} \kappa_Z h Z_\mu Z^\mu + \frac{g_W}{2c_W} \bar{t} \gamma_\mu (\kappa_v^t v_t^{\text{SM}} - \kappa_a^t a_t^{\text{SM}} \gamma_5) t Z_\mu - \frac{m_t}{v} \kappa_t \bar{t} t h, \quad (1)$$

Break the Zbb coupling degeneracy

Current Zh data could break the degeneracy

Including all Zh data

the two high P_T^Z data play an important role 8

Break the Zbb coupling degeneracy

Current Zh data could break the degeneracy

Including all Zh data

Removing the two high P_T^Z data 9

Break the Zbb coupling degeneracy

B. Zbb couplings@HERA and EIC

Single-Spin asymmetry (SSA):

$$A_e^b = \frac{\sigma_{b,+}^{\text{tot}} - \sigma_{b,-}^{\text{tot}}}{\sigma_{b,+}^{\text{tot}} + \sigma_{b,-}^{\text{tot}}}$$

+,-: right-handed and left-handed lepton

- 1. Photon only diagrams will cancel in SSA
- 2. The leading contribution is from the interference between photon and Z boson
- 3. It is sensitive to the vector component of the Zbb coupling

Zbb couplings@HERA

H1	R	L	
e^-p	$47.3\mathrm{pb}^{-1},0.36$	$104.4\mathrm{pb}^{-1},-0.258$	JHEP 09, 061 (2012)
e^+p	$101.3 \mathrm{pb}^{-1}, 0.325$	$80.7\mathrm{pb}^{-1},-0.37$	
ZEUS	R	L	Eur. Phys. J. C 62, 625 (2009)
e^-p	$71.2\mathrm{pb^{-1}},0.29$	$98.7\mathrm{pb^{-1}},-0.27$	$D_{\text{here}} = D_{\text{here}} = $
e^+p	$78.8\mathrm{pb}^{-1},0.32$	$56.7\mathrm{pb}^{-1},-0.36$	Phys. Rev. D 87, 052014 (2013)

Simplified-ACOT-chi scheme@NNLO

(i)
$$\epsilon_q^b = 0.001, \qquad \epsilon_c^b = 0.03, \qquad \epsilon_b = 0.7;$$

(ii) $\epsilon_q^b = 0.01, \qquad \epsilon_c^b = 0.2, \qquad \epsilon_b = 0.5.$

- 1. The SSA is sensitive to κ_V 2. $\kappa_{V,A} < 0$ could be excluded by HERA data
- 3. It could be used to crosscheck the off-Z-pole data 12

Zbb couplings@EIC

(i) : $\mathcal{L} > 27 \text{ pb}^{-1}$; (i) : $\mathcal{L} > 0.5 \text{ fb}^{-1}$; (i) : $\mathcal{L} > 42.0 \text{ fb}^{-1}$; (ii) : $\mathcal{L} > 214 \text{ pb}^{-1}$. (ii) : $\mathcal{L} > 4.0 \text{ fb}^{-1}$. (ii) : $\mathcal{L} > 332.6 \text{ fb}^{-1}$.

LHC vs. EIC

LHC: axial vector component of Zbb coupling

EIC: vector component of Zbb coupling

Summary

A. We proposed two new methods to probe the Zbb coupling at the LHC and ep colliders

B. The Zh data at the 13 TeV LHC can resolve the apparent degeneracy of the Zbb coupling;

C. Zh cross section depends on the axial-vector Zbb coupling, while the SSA in HERA and EIC is sensitive to the vector Zbb coupling ;

D. It is hopeful to verify or exclude the LEP measurement by those new methods.

