Status of CEPC Project

Haijun Yang (for the CEPC working group)

第十五届TeV物理工作组学术研讨会 北京,2021年7月19-21日

Worldwide Higgs Factories

IDT	ILC Pre-Lab			ILC Pre-Lab ILC Lab.											
PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.

- > 欧洲粒子物理战略规划建议正负电子希格斯 工厂是优先级最高的下一代对撞机。
- An electron-positron Higgs factory is the highest-priority next collider.

nature

Subscribe

NEWS • 19 JUNE 2020 • CORRECTION 23 JUNE 2020

CERN makes bold push to build €21-billion supercollider

European particle-physics lab will pursue a 100-kilometre machine to uncover the Higgs boson's secrets – but it doesn't yet have the funds.

Circular Electron Positron Collider (CEPC)

- □ The CEPC aims to start operation in 2030's, as a Higgs (Z/W) factory in China.
- To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for ~1M Higgs; at the Z pole for ~Tera Z, at the W+W⁻ pair (possible $t\bar{t}$ pair) production threshold.
- □ High precision Higgs, EW measurements, studies of flavor physics & QCD, probes of BSM physics.
- □ Possible Super *pp* Collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

CEPC Major Milestones

The CEPC Study Group August 2018 The CEPC Study Group October 2018

Editorial Team: 43 people / 22 institutions/ 5 countries

CEPC Accelerator Baseline (CDR)

Outer Ring

Outer Ring

RF

http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf

5

CEPC Accelerator Design Improvement

High luminosities at H and Z factories

- Optimization of parameters, improving dynamic aperture(DA) to include errors and more effects
- New lattice for high luminosity at Higgs
- New RF section layout
- More detailed study of MDI
- Optimization of the booster design and magnets
- A new alternative design of the LINAC injector
- A new plasma injector design
- Injection design
-
- Accelerator Review Committee
 - Recommended by the IAC, established & met in November, 2019
 - Next ARC meeting will be held in Nov., 2021

High luminosity Be pipe: 28mm, Beam pipe:17mm

CEPC Accelerator Design Improvement

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	45.5		
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.	036	
Crossing angle at IP (mrad)		16.5 × 2	2		
Piwinski angle	3.48	7.0	2	3.8	
Particles /bunch Ne (1010)	15.0	12.0	8	3.0	
Bunch number	242	1524	12000 (10% gap)	
Bunch spacing (ns)	680	210		25	
Beam current (mA)	17.4	87.9	40	51.0	
Synch. radiation power (MW)	30	30	1	6.5	
Bending radius (km)		10.7			
Momentum compaction (10 ⁻⁵)		1.11			
β function at IP $\beta_x * / \beta_y * (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079	
RF voltage V _{RF} (GV)	2.17	0.47	0	.10	
RF frequency f_{RF} (MHz)		650			
Harmonic number		216816		an	
Natural bunch length σ_{z} (mm)	2.72	20	nes	I9 ¹	
Bunch length $\sigma_{\overline{z}}$ (mm)	4.4	line	V		
Damping time $\tau_x/\tau_y/\tau_E$ (ms)	000	ellin	049.5/84	19.5/425.0	
Natural Chrometic	2 Ba-	-101	-491/-1161	-513/-1594	
Bat A Q C		363.10 / 36	5.22		
2010	0.065	0.040	0.	028	
.vy (2 cell)	0.46	0.75	1	.94	
Natural energy spread (%)	0.100	0.066	0.	038	
Energy spread (%)	0.134	0.098	0.	080	
Energy acceptance requirement (%)	1.35	0.90	0	.49	
Energy acceptance by RF (%)	2.06	1.47	1	.70	
Photon number due to beamstrahlung	0.082	0.050	0.	023	
Beamstruhlung lifetime /quantum lifetime [†] (min)	80/80	>400			
Lifetime (hour)	0.43	1.4	4.6	2.5	
F (hour glass)	0.80	0.94	0	.99	

	ttbar	Higgs	W	Z		
Number of Ips	2					
Circumference [km]		100.	0			
SR power per beam [MW]		30				
Half crossing angle at IP [mrad]		16.5	5			
Bending radius [km]		10.7	7			
Energy [GeV]	180	120	80	45.5		
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037		
Piwinski angle	1.21	5.94	6.08	24.68		
Bunch number	35	249	1297	11951		
Bunch population [10^10]	20	14	13.5	14		
Beam current [mA]	3.3	16.7	84.1	803.5		
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43		
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9		
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	ian	0.27/1.4		
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/2	Jesig	6/35		
Bunch length (SR/total) [mm]	2.2/2.9	aroveu.	2.5/4.9	2.5/8.7		
Energy spread (SR/total) [%]	021 IM		0.07/0.14	0.04/0.13		
Energy acceptance (DA/RF) [%]	02	1.6/2.2	1.2/2.5	1.3/1.7		
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127		
RF voltage [GV]	10	2.2	0.7	0.12		
RF frequency [MHz]	650	650	650	650		
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8		
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/		
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202		
Beam lifetime [min]	18	12.3	55	80		
Hour glass Factor	0.89	0.9	0.9	0.97		
Luminosity per IP[1e34/cm^2/s]	0.5	(5.0)	16			

- CEPC 650MHz 800kW klystron: high efficiency (80%), fabrication will be completed in 2021, test in 2022 \succ
- CEPC 650MHz SC accelerator system (cavities and cryomodules): to complete test cryomodule in 2022 \succ
- \succ
- \succ
- \succ

- **Collimator: to complete model test in 2022** \geq
- Linac components: to complete key components test in 2022
- Civil engineering design: to complete reference implementation design in 2022 \succ
- Plasma wakefield injector: to complete the electron accelerator test in 2022 \succ
- 18KW@4.5K cryoplant: industrial partner \succ

CEPC SCRF Test Facility

CEPC SCRF test facility (Lab): Beijing Huairou (4500m²)

New SC Lab Design (4500m²)

SC New Lab will be available in 2021

Crygenic system hall in Jan. 16, 2020

Vacuum furnace (doping & annealing)

Temperature & X-ray

mapping system

Nb3Sn furnace Nb/Cu sputtering device Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

Second sound cavity

quench detection system

Helmholtz coil for

cavity vertical test

Vertical test dewars

Horizontal test cryostat

9

CEPC R&D: High Q SCRF Cavities

➢ IHEP在国际上首次成功实现1.3GHz 9-cell超导腔中温退火工艺和批量试制 ➢ 性能超过美国SLAC的LCLS和上海硬X射线自由电子激光的超导腔设计指标

CEPC R&D: High Efficiency Klystrons

- **The 1st prototype finished fabrication & passed the max. power test.**
- Output power reaches 700 kW in CW mode and 800 kW in pulsed mode. Power transfer efficiency ~ 62%, goal is to reach ~80%
- One of the key technology and breakthrough for CEPC

High power test

Bake out

Cold test

CEPC R&D: 650MHz SCRF Module

> 在先进光源研发与测试平台 (PAPS) 的支持下,正在研制一台包含2个650MHz 2-cell超导腔及其附件的650MHz模组,用于验证CEPC的关键技术。

北京怀柔PAPS束流实验装置

国内首个超导腔大功率 高阶模吸收器(5kW)

国内首个可拆卸大功率 高阶模耦合器(1kW)

650MHz主耦合器 (400kW) 世界上最大的耦合器之一

超导腔调谐器

CEPC R&D: Magnets etc.

> Magnets, EM-separators, Vacuum Pipes, ...

HL-LHC Magnet and HTS SC Magnet

Layout of the HL-LHC Magnets and Contributors

China will provide 12+1 units CCT superconducting magnets for the HL-LHC project

After more than 1 month test and training at 4.2K, both apertures reached the design current and ultimate current, and the field quality is within the limit.

The CEPC Physics Program

Operation mode		ZH	Z	W⁺W⁻
\sqrt{s} [GeV]		~240	~91.2	158-172
Run time [years]		7	2	1
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10
CDR	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷
Latest	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	15.4

The large samples from 2 IPs: ~10⁶ Higgs, ~2x10⁷ W, ~7x10¹¹ Z bosons

- CEPC Conceptual Design Report:
 - Volume 1 Accelerator, arXiv:1809.00285

Volume 2 – Physics & Detector, arXiv:1811.10545

CEPC Detector and Software

Recent added CEPC software applications:

- Software for SiTrk + DC design, detector description and track fitting
- Cluster counting method of Drift Chamber (DC)
- Simulation and simplified digitization of the crystal bar ECal

Full simulation reconstruction Chain functional, iterating/validation with hardware studies

CEPC Physics Performance (CDR)

e⁺e⁻ annihilations at the CEPC

- CEPC can make detailed study of various physics processes
- Higgs bosons are detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified

Order of magnitude improvement in precision \Rightarrow Unknown/discoveries

Precision of Higgs coupling measurement (7-parameter Fit)

CEPC 使希格斯耦合参数测量精度 比HL-LHC实验提高 5-10 倍

《Precision Higgs Physics at CEPC》 荣获中国物理学会2020年度最有影响论文奖 Chinese Physics C, 43 (2019) 043002

Discovery Potential for New Physics

The physics motivations dictate our selection of detector technologies

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o b ar{b}/car{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{ ext{jet}}_E/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H o \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

Conceptual Detector Designs

The 4th Conceptual Detector Design

> 提出新的CEPC探测器方案: 基于硅径迹探测器 + 漂移室PID + 晶体电磁量能器 + 薄螺线管磁铁介于电磁量能器和强子量能器之间

CEPC R&D: Machine Detector Interface (MDI)

CEPC R&D: Silicon Pixel ASIC Chips

CPV4 (SOI-3D), 64×64 array ~21×17 μ m² pixel size

CEPC R&D: Time Projection Chamber

MOST 1

TPC Prototype + UV laser beams

Low power FEE ASIC

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

CEPC R&D: PFA Calorimeters

CEPC R&D: ECAL Prototype

Scintillator ECAL Prototype

Scintillator-Tungsten Sandwich ECAL

scintillator strips

Ecal Basic Unit (EBU)

Super-layer: two EBU and absorber layers integrated

 \succ Energy resolution $< 16\%/\sqrt{E}$, position resolution $< 10mm \times 10mm$

➢ One EBU: 210 sensitive cells of scintillator strip coupling with SiPM

- Scintillator strips : 2mm × 5mm × 45mm
- SiPM (HPK) : S12571-010P (24 layers) and S12571-015P (8 layers)
- Super-layers: two alternate of EBU and absorber layers integrated
- Complete Sc-ECAL prototype has been fabricated
 - Transverse dimension : 226 mm × 222 mm
 - Radiation length : 22 X₀

CEPC R&D: ECAL Prototype

Sc-ECAL Prototype

- A 32-layer ECAL prototype (2-layer from Japanese groups): 3.2 mm thick W-Cu plate, scintillator bar size 5×45×2 mm³, 1 SiPM/bar.
- It has been tested with cosmic rays, and an electron beam at IHEP (Nov. 2020).

Granularity: 5mm × 5mm Position resolution: 1.6-1.8mm

CEPC R&D: High Granularity Crystal ECAL

CEPC R&D: SDHCAL

• SDHCAL based on GRPC: GRPC 100cm x 100cm

Prototype size $1 \times 1 \times 1.3$ m³, 48 layers, 1×1 cm² detector cell, 2 cm steel absorber.

Fast timing PCB readout electronics using PETIROC Chip (~40ps) from Omega group.

MPGD (RWELL) 50cm x 100cm 30

CEPC R&D: AHCAL Prototype (Sct+SiPM)

USTC/SJTU/IHEP

CEPC R&D: Muon Detector

• **RPC** R&D applies to both SDHCAL & Muon.

- An alternative is μ-RWELL technology. The concept was proved. Currently focus mainly on industrialization and cost reduction.
- Scintillator Muon detector. R&D overlaps with Belle II
 - Building a prototype detector
 - Scintillator strips, improving quality & cost-reduction.
 - WLS fiber: purchased Kuraray, focusing on optical couplings.
 - SiPM Hamamatsu S13360-13**CS, and MPPC option.

Fudan U.

Aim for 100-200 ps.

CEPC R&D: Solenoid Magnet

Main Challenges Low mass, ultra-thin, high strength cable

Collaboration with Industry (CIPC)

CEPC Site Selection

- Site selection is based on geology, electricity supply, transportation, environment for foreigners
 - Local support & economy, …
 - North site is better for reduction of operation cost
 - Initial CDR study is based on Qing-Huang-Dao site

- ✤ More invitations from local governments: Changsha, Changchun, …
- Recent visit to Changsha and Changchun: good geology & transportation (~20 km from large city & international airport)
- Changsha government enlisted Hunan Univ. to conduct a study on the benefit that CEPC could bring to Changsha. (visited IHEP in May and July)

CEPC Project Timeline

> 2013-2025: Key technology R&D, from CDR to TDR, Site selection > Ideal situation: Start construction in the 15th Five-Year Plan

CEPC Project Timeline

		2015	2020 2020	2025 2025	2030		2035	502	050	<008
	Pre	-Studies	Key Tech. R&D Engineering Design	Pre- Construction	Construction		Dat	ta Taking		
CEPC-SPPC Concept		2013.9 2015.3	 2016.6 R&D funde 2018.5 1st Worksh 2018.11 Release of Project kick-off meeting Release of Pre-CDR 	 Site selecti technology Accelerato internation d by MOST op outside of Chin f CDR 	on, engineering design & system verification r TDR, MoU, al collaboration na	•	Higgs Tunnel and infra Accelerator com Installation, alig commissioning Decision on dete detector TDRs; (installation and	astructure c nponents pr gnment, cali ectors and r Construction commissior	Z W construction oduction; bration and release of n, ning	
			• 2018.2 1 st 10) T SC dipole magn	net et & HTS cable R&D	• 20 Nb ₃ S	TSC dipole magn n+HTS or HTS	et R&D with		

CEPC is a clean Higgs/W/Z factory with great physics potential

 $\,\circ\,$ Improve Higgs/EW precision and BSM sensitivity by 1-2 order of magnitude

 \odot Great potential on QCD, Flavor Physics and BSM

CEPC CDR released in Nov., 2018, towards CEPC TDR

- $\,\circ\,$ Improvement of Higgs/Z luminosity, towards accelerator TDR at the end of 2022
- $\,\circ\,$ Proposal for the 4th conceptual detector design, towards detector TDR

Key technology R&D:

- High Q SCRF, High efficiency Klystron, High field SC magnets, ...
- $\,\circ\,$ Silicon pixel ASIC chip, TPC, PFA ECAL prototype, SDHCAL, AHCAL, ...

CEPC physics whitepaper, physics potential study for Snowmass 2021/2022

CEPC International Workshops:

- In China: Beijing (2017.11, 2018.11, 2019.11), Shanghai (2020.10), Nanjing (2021.Nov.8-12)
- In Europe: Rome (2018.05), Oxford (2019.04), Marseille (2022.05?)
- In USA: Chicago (2019.09), DC (2020.04, online)
- $\circ\,$ In HKUST: Annual IAS HEP program since 2015; specific topics every year

Funding support in China: MOST, NSFC, CAS, institutes, local governments...

You are very welcome to join the CEPC R&D, thanks !

Recent CEPC Workshops

THE 2018 INTERNATIONAL WORKSHOP ON HIGH ENERGY CIRCULAR ELECTRON POSITRON COLLIDER

November 12-14, 2018 Institute of High Energy Physics, Beijing, China https://indico.ihep.ac.cn/event/7389 Submissions of abstracts are encouraged.

The International Workshop on the Circular Electron Positron Collider EU EDITION 2019

Oxford, April 15-17, 2019

Next CEPC International Workshop

at Nanjing University, Nov. 8-12, 2021

You are very welcome to participate

https://indico.ihep.ac.cn/event/14938/

The 2020 International Workshop on the High Energy Circular Electron Positron Collider

> October 26-28, 2020 Shanghai Jiao Tong University, Shanghai, China

> > https://indico.ihep.ac.cn/event/114

🛞 产性工作主作 🥌

Continuing R&D and deep understanding of physics potentials

- Suggestions to MOST for R&D support and validations of key technologies & innovations
- Planning **next round design improvement**, **R&D**, site investigations-study
- **CEPC physics whitepaper**; physics potentials in Snowmass 2021/2022 arena

International Collaboration and Engagement

- Regular-formal **annual meetings** with major international labs and partners
- Actively participating in European Strategy Update and Snowmass activities
- Engaging actively in ILC, FCC as well as HL-LHC upgrade activities
- Actively participating international detector R&D collaborations: CALICE, LPTPC, RD*, ...
- R&D and make major **progress + breakthroughs** in common technologies
- Plan to form two international collaborations
- Finding and sharing solutions to common issues (design, accelerator/detector components, ...)

^{•}

White papers

- To promote the physics study at TDR & to converge to the Physics White Papers
- Physics white papers:
 - Physics handbooks for new comers: PostDoc/Student
 - Official references for the physics potential
 - Guideline for future detector design/optimization
- Higgs white paper published in 2019

Updated Higgs Couplings

CEPC @ Snowmass

HD ⁴⁶ .ull 🙃			⊚ 米 段 49	% 🔳 11:53
く 聊天信	息(121)	>		
安 曼奇	王连涛	方亚泉	庄胥爱	公 开心
(」 」 刘真	GLI	杨思奇	入 张昊	() 李一鸣
梁志均(一次	郑太范		08
朱华星	永 宗 朱宏博	廖红波		张华桥
Cen	日辺の	▲ ▲ 単 単 単 単 単 単 単 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Wang J	XCLou
李海波	李衡讷	李钊	李鼓	顾嘉荫
高俊	刘言东	lovecho	武雷 (王健
		-		-

title	ID	author	link
Study of electroweak phase transition in exotic Higgs decays with CEPC Detector simulation	229-v1	Michael Ramsey-Musolf	URL
Exclusive Z decays	226-v1	Qin Qin	URL
Measurement of the leptonic effective weak mixing angle at CEPC	233-v1	Siqi Yang	URL
Heavy Neutrino search in Lepton-Rich Higgs Boson Rare Decays	244-v1	Yu Gao	URL
Higgs boson CP properties at CEPC	227-v1	Xin Shi	URL
Measurement of branching fractions of Higgs hadronic decays	228-v1	Yanping Huang	URL
Feasibility study of CP-violating Phase phi_s measurement via Bs->J/PsiPhi channel at CEPC	230-v1	Mingrui Zhao	URL
Probing top quark FCNC couplings tqr, tqZ at future e+e- collider	231-v1	Peiwen Wu	URL
Searching for $B_s ightarrow \phi u u$ and other b->dvv processes at CEPC	232-v1	Yanyun Duan	URL
Probing new physics with the measurements of e+e> W+W- at CEPC with optimal observables	234-v1	Jiayin Gu	URL
NNLO electroweak correction to Higgs and Z associated production at future Higgs factory	235-v1	Zhao Li	URL
SUSY global fits with future colliders using GAMBIT	237-v1	Peter Athron	URL
Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC	238-v1	Waqas Ahmed	URL
Search for t + j + MET signals from dark matter models at future e+e- collider	239-v1	Peiwen Wu	URL
Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets	240-v1	Mengchao Zhang	URL
Dark Matter via Higgs portal at CEPC	241-v1	Tianjun Li	URL
Lepton portal dark matter, gravitational waves and collider phenomenology	242-v1	Jia Liu	URL
CEPC Detectors Letter of Intent	245-v1	Jianchun Wang	URL

未来高能对撞机方案-希格斯工厂

欧洲: 计划建造超级对撞机(FCC)

nature 19 JUNE 2020

Subscribe

NEWS • 19 JUNE 2020 • CORRECTION 23 JUNE 2020

CERN makes bold push to build €21-billion supercollider

European particle-physics lab will pursue a 100-kilometre machine to uncover the Higgs boson's secrets – but it doesn't yet have the funds.

- > 欧洲粒子物理战略规划明确 建议希格斯工厂是优先级最高的下一代对撞机。
- ➢ CERN计划2040前后建造 100公里长超级对撞机:
 - FCC-ee (希格斯工厂)
- > 更长远的计划
 - FCC-hh (质子对撞机)

日本: 国际直线对撞机(ILC)

LCWS2021 (Mar.15,2021)

CEPC Physics Performance (CDR)

The large samples of H, Z & W bosons from the CEPC provide an unique opportunity

- □ Higgs physics white paper, <u>arXiv:1810.09037</u>
- □ Model independent measurement of Higgs boson width.
- ❑ Delivers ≤ 1% precision in some key measurements of Higgs properties, some are not accessible @ LHC.
- □ Sensitive to invisible decay modes of Br ~0.3%, and exotic decay channels.

Precision of Higgs coupling measurement (7-parameter Fit)

- Precision EW measurements,
- □ Flavor physics (b, c, tau),
- □ Study of QCD,
- Probe physics BSM.

Chinese Physics C, 43 (2019) 043002

DR Calorimeter & SCEPCAL

A 3×3 towers ECal-size prototype has been built, waiting for testbeam.

Dual Readout calorimeter in the IDEA design

•

•

PbWO crystals

Front segment (~ $6 X_0$)

160 Cherenkov fibers 160 scint. fibers Tower: 20 rows x 16 columns

Combining Crystal ECal and DR Calorimeter by Eno, Lucchini, and Tully et al. (arXiv:2008.00338)

IDEA Drift Chamber

Xilinx KCU105

CEPC R&D: TPC/DC for Particle ID

- ◆ Both TPC & DC in the two designs have good PID, with dE/dX or dN/dX (cluster counting).
- ◆ The FST solution needs a supplement PID. A combination of different PID detectors is also possible.
- Aim is to for have $2\sigma \pi/K$ separation for P<~20 GeV/c.
- Drift chamber between the outer layers of FST. The dN/dX method is more efficient. It is a joint R&D effort with the IDEA DC. But the DC can be optimized for PID only, not its tracking capability.
- Time of flight detector, e.g. LGAD. The time resolution ~20-30 ps today. Resolution of 10 ps is possible by the time of CEPC.
- Other options, e.g. an aerogel **RICH**, will also be considered.

IHEP-NDL LGAD-V2 Pixel size 1.3 × 1.3 mm²

CEPC Vertex and Tracker

- Single-point resolution of the first layer better than 3 $\mu\mathrm{m};$
- Material budget below 0.15% X₀ per layer;
- First layer located close to the beam pipe at a radius of 16 mm, with a material budget of 0.15% X_0 for the beam pipe;
- Detector occupancy not exceeding 1%.

	$R (\mathrm{mm})$	z (mm)	$ \cos \theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

Operation mode	H (240)	W(160)	Z (91)
Hit density (hits $\cdot \text{ cm}^{-2} \cdot \text{BX}^{-1}$)	2.4	2.3	0.25
Bunching spacing (µs)	0.68	0.21	0.025
Occupancy (%)	0.08	0.25	0.23

CEPC Vertex Detector

Pixel Vertex Detector Optimization: Long Barrel Design

Full Silicon Tracker Concept

Proposed by Berkeley and Argonne

Drawbacks: higher material density and limited particle identification (dE/dx)

54

Silicon Tracker

- Area of the silicon tracker is very big: ~70 m² in SiTrk+TPC, or ~140 m² in FST plans. R&D focuses on cost effective and high performance.
- A HV-CMOS solution based on the ATLASPix3 designed by KIT.
- Study ATLASPix3 with radioactive source, cosmic ray, & particle beam.
- A short stave demonstrator will be constructed.
- A CEPC-version of pixel size 25×150 μm^2 is to be fabricated with the HLMC 55nm technology.

Fe-55 with collimator

The Experimental Area

Main cavern to host the detector

- 40*30*30 m³ (L*H*W)
- One main access shaft, Ø16 m
- An 1K-ton gantry crane for large heavy objects
- Auxiliary cavern for peripheral equipment and devices
- 80*18*18 m³ (L*H*W)
- One service shaft of Ø9 m
- One personnel access shaft Ø6 m

Ground level buildings

Accelerator R&D: High Q SRF Cavities

IHEP 1.3 GHz 9-cell Cavities Vertical Test at 2 K

CEPC Software

- Core software, external libraries & tools are the base of the CEPCSW. More packages and components will be added when available.
- CEPC applications are created for CDR design. With new type of detectors introduced, corresponding codes are being developed.
- Recent added CEPC applications:
 - Software for SiTrk + DC design, detector description and track fitting.
 - Cluster counting method of DC
 - Simulation and simplified digitization of the crystal bar ECal.
- Work to be done
 - Further development of simulation & reconstruction for SiTrk+DC and Crystal bar ECal.
 - Non-uniform magnetic field & piling-up of beam backgrounds in simulation
 - Algorithms for building reconstructed particles
 - Continue to check the consistence of software, with benchmark performance studies.

CEPCSW structure

