

1

BSM Physics at ATLAS

Lei Zhang (张雷)

Email: leizhang1801@nju.edu.cn The 15th workshop of TeV physics working group

- Standard Model (SM), including the experimental tests, great achievement in human history
- Discovery of Higgs boson makes SM self-consistent

Beyond Standard Model

Standard Model can not answer many questions

Exploration at energy frontier

- ALLE A
- LHC-ATLAS experiment hopefully could give some hints

Picture modified from Jonathan Feng at 2017 ICFA Seminar

Large Hadron Collider

Powerful discovery machine with four major experiments

ATLAS experiment

Mean Number of Interactions per Crossing

- Given the complex of LHC-ATLAS, multi-stage DQ deployed
 - 1) Online monitor, 2) Express stream, 3) Bulk processing,
 - 4) Alignment and calibrations, 5) Bulk Reprocess

New Physics searches at ATLAS

No one doing old physics !

New Physics search at ATLAS

- ATLAS produced more than 1000 papers
- Try to overview the whole field while highlighting new results
 - Can not cover every topics
 - Selective and based on personal preference
 - Apologies if any relevant topic missed

ATLAS celebrates results of 1000 collision papers

01 Origin of EWSB

Di-Higgs, extra Higgs and scalars

03 Anomalies driven

LFV, g-2, v-mass, Leptoquark, etc

02 GUT, Extra-Dim

Di-boson resonance, W', Z', Vector-Like Quark, etc.

04 Dark matter driven

Invisible decay, mono-jet, -H, -Z, Wt, 2HDM+a, etc

05 SUSY inspired

SUSY particles, Long Lived Particle, etc.

- Thermal history of EWSB
 - Probe the Higgs potential, via Higgs self-coupling

- Extended Higgs sector
 - Impact the Higgs potential, leads first order phase transition
 - Predict extra Higgs bosons

$$V_{\rm CxSM} = \frac{m^2}{2} \mathbf{H}^{\dagger} \mathbf{H} + \frac{\lambda}{4} (\mathbf{H}^{\dagger} \mathbf{H})^2$$

Example:

Complex singlet extension

$$\left| + \frac{\delta_2}{2} \mathbf{H}^{\dagger} \mathbf{H} |\mathbb{S}|^2 + \frac{b_2}{2} |\mathbb{S}|^2 + \frac{d_2}{4} |\mathbb{S}|^4 + \left(\frac{b_1}{4} \mathbb{S}^2 + a_1 \mathbb{S} + c.c.\right) \right|$$

- - Exp. 95% CL limits

Obs. 95% CL limits

Di-Higgs production (summary plots)

ATLAS

√s = 13 TeV. 27.5 - 36.1 fb

 σ^{SM} (np \rightarrow HH) = 33.5 fb

- At LHC, self-coupling probed via di-Higgs (HH) production
- \triangleright HH also sensitive to BSM heavy scalars or Graviton

g accordence

Observed

Expected

Expected + 1a Expected ± 2σ [dd] (HH

HH \rightarrow bbγγ <u>Atlas-Conf-2021-016</u>

- Both ggF and VBF modes explored
- BDT used to define signal regions
- > Final discriminant: $m_{\gamma\gamma}$
- > Constrained κ_{λ} into [-1.5, 6.7]
- Most sensitive for m_x below 400 GeV

Boosted HH \rightarrow bb $\tau\tau$ JHEP 11 (2020) 163

Antes

- First boosted di-tau tagger at ATLAS
 - Reconstructed as R=1.0 jet with R=0.2 sub-jets
 - Identified against q/g initiated jets by BDT
- > Complement resolved analysis for $m_X > 1.2$ TeV

Extended Higgs sector

- Many models: MSSM, 2HDM, triplet, etc
- Benchmark models: MSSM-like
 - Five Higgs bosons: h, H, A, H^{\mp}
 - Two free parameters at tree level: m_A , $\tan \beta = v_u / v_d$

Charged Higgs: $H^{\mp} \rightarrow tb$ JHEP 06 (2021) 145

 Sensitive at high mass and low tan β

$A/H \rightarrow \tau \tau$ <u>PRL 125 (2020) 051801</u>

The second secon

- Down type fermion, sensitive to high tan β regime
- "Flag-ship" analysis in BSM Higgs searches

3D likelihood

Doubly charged H⁺⁺ \rightarrow WW <u>JHEP 06 (2021) 146</u>

- Additional Triplet of scalar fields
 - Account for neutrino masses through type-II seesaw mechanism
- Final states: multi-lepton

High mass resonance searches

- New resonances at TeV energy scale predicted by many BSM
- Boosted object tagging: important technique at m>1TeV
 - Hadronically-decaying W/Z bosons and top quarks reconstructed as one large-R jet (R=1.0)

- Explored models: >
 - Leptophobic Z' and KK gluon decaying to $t\bar{t}$
- A few channels probe up to 5 TeV \triangleright

Di-boson resonance searches ATL-PHYS-PUB-2021-018

Excluded mass range [TeV]

 Heavy Vector Triplet (HVT)

*small-radius (large-radius) jets are used in resolved (boosted) events

[†]with $\ell = \mu$, e

Anomalies in lepton sector

New physics search in $ee/\mu\mu+0/1b$ arXiv:2105.13847

23

- Model: bsll contact interaction motivated by B anomalies
- Strategy: looking for deviation at the high mass tail

Search for 3rd Leptoquarks

- Leptoquarks(LQ)
 - Scalar or vector bosons, predicted by many GUT-like models
 - Non-zero baryon and lepton numbers
 - Could explain B anomalies and μ g-2

25

Search for 3rd Leptoquarks ATLAS-CONF-2021-008/

- > Pair produced LQ $\rightarrow t\nu/b\tau$ or $t\tau/b\nu$
- Minimal BRW model
 - Yukawa-type couplings to or qℓ qν
 [*PLB* 191 (1987) 442-448]
- Strategy
 - E_{T}^{miss} > 250 GeV
 - Categorized on N_{bjet} and $N_{\tau-had}$

Summary of Leptoquark searches

Dark matter

Dark matter at LHC

mono-jet, -W/Z, -H searches

SUSY LSP Higgs portal χ Η ×

Resonant mediator searches

Associated productoin

Mono-Higgs ($H \rightarrow \gamma \gamma$) <u>arXiv:2104.13240</u>

- Analysis strategy
 - Require 2 γ + large E^{miss}_t
 - Final fit on m_{γγ}

Explored models: Z'_{B} , Z'-2HDM, 2HDM+a

30

Summary of DM mediator searches ATL-PHYS-PUB-2021-006/

Exotic Higgs Boson Decays

 Higgs portal to hidden sector

Higgs invisible decay

ATLAS-CONF-2020-008

$H \rightarrow aa \rightarrow bb\mu\mu$ <u>ATLAS-CONF-2021-009</u>

ALLES Y

- Higgs decaying to 2 pseudoscalar
- ► Large Br(a→bb) and a clean $a \rightarrow \mu\mu$ signature
 - Cut-and-count analysis on m_{µµ}
 - BDT trained in multiple $m_{\mu\mu}$ windows

 3.3 (1.7) σ local (global) significance

H \rightarrow aa summary <u>ATL-PHYS-PUB-2021-008/</u>

New resonance searches ATL-PHYS-PUB-2021-009

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

SUSY, a well motivated theory

SUSY

. . .

- Why Higgs mass so light?
- How can the forces of nature be unified?
- What about the nature of Dark Matter?

Natural SUSY with relatively light stops, gluinos and higgsinos.

36

SUSY top partner

- R-Parity Conservation
 - +1 for SM particles
 - -1 for superpartners
 - LSP stable, neutral one could be DM candidate
- Difficulties around
 - $\Delta m = m_{top}$
 - $\Delta m < m_b + m_W$

ATUS A

low-energy ("soft")

Soft b-tagging

- track jets with pT> 5 GeV
- Secondary vertices using only tracks

Irreducible ttbar backgrounds

Precise ttbar measurement

• Spin correlation

Smaller cross section, comparing to \geq the strong production

 $\begin{array}{ccc} & 700 & 800 \\ m(~\widetilde{\chi}_{1}^{\pm},~\widetilde{\chi}_{2}^{~0}~)~[\text{GeV}] \end{array}$

arXiv:1908.08215

√s=8,13 TeV, 20.3-139 fb⁻¹ ATLAS Preliminary All limits at 95% CL May 2020 400 m($\widetilde{\chi}^0_1$) [GeV] - - · Expected limits Observed limits 350 $\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0$ via 300 WZ 21, 31 250 arXiv:1806.02293 arXiv:1911.12606 200 ATLAS-CONF-2020-015 Wh lbb, yy, 3l 150 arXiv:2004.10894 arxiv:1909.09226 100 ATLAS-CONF-2020-015 $\widetilde{\chi}_1^*\widetilde{\chi}_1^-$ via 50 WW 21 arXiv:1403.5294

EW SUSY

200

300

400

500

600

Boosted bosons ATLAS-CONF-2021-022

- Signature: two boosted W/Z/h + E_T^{miss}
 - First search for 4*q* fully hadronic signature at LHC
 - > $\tilde{\chi}_{heavy}$ exclusion reaches up to 1 TeV

R-Parity Violation arXiv:2106.09609

- Strong and EW production with RPV decays
 - Final state: 1lepton plus multijets
 - High $N_{jet/b-jet}$, no E_t^{miss}

q

q

q

40

SUSY summary ATL-PHYS-PUB-2021-019

ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$ June 2021 Signature $\int \mathcal{L} dt \, [\mathbf{fb}^{-1}]$ Model Mass limit Reference 0 e, µ 2-6 jets E_T^{miss} E_T^{miss} 1.85 m($\tilde{\chi}_{1}^{0}$)<400 GeV $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 139 2010 14202 mono-iet 1-3 jets 36.1 q [8× Degen.] 0.9 2102.10874 $m(\tilde{a}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$ 2-6 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ $0 e, \mu$ E_{T}^{miss} 139 23 m(x⁰)=0 GeV 2010.14293 1.15-1.95 2010.14293 m(X1)=1000 GeV 1 e.u 2-6 iets 139 2.2 m(x⁰)<600 GeV 2101.01629 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow a\tilde{a}W\tilde{\chi}_{1}^{0}$ ee, µµ 2 iets E_{∞}^{miss} 36.1 $m(\bar{e})-m(\bar{\chi}_{1}^{0})=50$ GeV 1805.11381 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{X}$ 1.2 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ 0 e, µ 7-11 jets E_T^{miss} 139 1.97 $m(\bar{\chi}_{1}^{0}) < 600 \text{ GeV}$ 2008.06032 SS e.u 6 jets 139 1.15 m(g)-m(X1)=200 GeV 1909.08457 0-1 e, µ ATLAS-CONF-2018-041 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ 3b E_T^{miss} 79.8 2.25 $m(\hat{\chi}_{1}^{0}) < 200 \text{ GeV}$ SS e.u 6 jets 139 1.25 m(g)-m(x1)=300 GeV 1909.08457 $\tilde{b}_1 \tilde{b}_1$ 0 e, µ E_T^{miss} 1.255 2101 12527 2b139 m(x10)<400 GeV 0.68 10 GeV<∆m(b1, X1)<20 GeV 2101.12527 0 e, µ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$ 6b E_T^{miss} E_T^{miss} 139 Forbidden 0.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV}$ 1908.03122 0.13-0.85 27 2 b 139 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ ATLAS-CONF-2020-031 0-1 e. u ≥ 1 jet E_T^{miss} 139 1.25 2004.14060.2012.03799 $\tilde{l}_1 \tilde{l}_1, \tilde{l}_1 \rightarrow t \tilde{\chi}_1^0$ m(x10)=1 GeV 3 jets/1 b E_T^{miss} $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W h \tilde{\chi}_1^0$ 1 e, µ 139 Forbidden 0.65 $m(\tilde{\chi}_{1}^{0})=500 \text{ GeV}$ 2012.03799 E_T^{miss} $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 by, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ 1-2 τ 2 jets/1 b 139 Forbidden 1.4 m(?)=800 GeV ATLAS-CONF-2021-008 m(\$\tilde{\text{i}}_1)=0 \text{ GeV} $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0 e. µ 20 Fmiss 36.1 0.85 1805.01649 E_T^{miss} 0 e, µ mono-iet 139 0.55 $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$ 2102 10874 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ 1-2 e.u 1-4 b Emiss 139 0.067-1.18 $m(\hat{\chi}_{2}^{0})=500 \text{ GeV}$ 2006.05880 $\tilde{l}_2 \tilde{l}_2, \tilde{l}_2 \rightarrow \tilde{l}_1 + Z$ 3 e, µ 1 b E_T^{miss} 139 Forbidden 0.86 $m(\tilde{\chi}_{1}^{0})=360 \text{ GeV}, m(\tilde{r}_{1})-m(\tilde{\chi}_{1}^{0})=40 \text{ GeV}$ 2006.05880 $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0}$ via WZ Multiple *ℓ*/iets E_T^{miss} E_T^{miss} 139 #/X2 0.96 $m(\tilde{\chi}_1^0)=0$, wino-bino 2106.01676, ATLAS-CONF-2021-022 ee, µµ ≥ 1 jet 139 0.205 $m(\tilde{\chi}_1^*)-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino 1911.12606 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW 20.11 139 0.42 E_T^{miss} $m(\tilde{\chi}_{1}^{0})=0$, wino-bino 1908.08215 Multiple *l*/jets 2004.10894, ATLAS-CONF-2021-022 $\tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0}$ via Wh E_T^{miss} 139 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden 1.06 $m(\tilde{\chi}_1^0)=70$ GeV, wino-bino $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$ $2 e, \mu$ E_T^{miss} 139 1.0 $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1908.08215 27 E_T^{miss} 139 TL TRI 0.16-0.3 0.12-0.39 1911.06660 $\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$ $m(\tilde{\chi}_{1}^{0})=0$ 2e.u0 iets 139 0.7 1908.08215 $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ E_T^{miss} E_T^{miss} $m(\tilde{\chi}_{1}^{0})=0$ ≥ 1 jet 139 0.256 ee, µµ $m(\tilde{\ell})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$ 1911 12606 0 e,µ $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$ 0.13-0.23 0.29-0.88 $BB(\tilde{\chi}_{1}^{0} \rightarrow h\tilde{G})=1$ 1906 04020 $\geq 3b$ E_T^{miss} 36.1 0.55 4 e, µ 0 jets 139 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 2103.11684 ≥ 2 large jets E_T^{miss} 0 e, µ 139 0.45-0.93 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ ATLAS-CONF-2021-022 Disapp. trk Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ 1 jet E_T^{miss} 139 0.66 Pure Wino ATLAS-CONE-2021-015 0.21 Pure higasino ATLAS-CONF-2021-015 Stable § R-hadron 1902.01636,1808.04095 Multiple 36.1 2.0 Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow ga \tilde{\chi}_1^0$ Multiple 36.1 2.05 2.4 m($\tilde{\chi}_{1}^{0}$)=100 GeV 1710.04901.1808.04095 $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell \tilde{G}$ Displ. lep E_T^{miss} 139 0.7 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 0.34 $\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$ 3 e.u 139 $(BB(Z_T)=1, BB(Z_{\ell})=1)$ 0.625 1.05 Pure Wino 2011.10543 0 iets $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\gamma\gamma$ 4 e.u E_T^{miss} 139 $[\lambda_{i11} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m(x10)=200 GeV 2103.11684 4-5 large jets Large J. $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 36.1 ſmí ⁽⁰)-200 GeV 1100 G 19 1804 03568 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$ Multiple 36.1 =2e-4, 1e-0.55 1.05 m(X1)=200 GeV, bino-like ATLAS-CONF-2018-003 $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$ $\geq 4b$ 139 Forbidden 0.95 m(X[±]₁)=500 GeV 2010.01015 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 36.7 0.42 0.61 1710.07171 $2 e, \mu$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$ 0.4-1.45 $BR(\tilde{t}_1 \rightarrow be/bu) > 20\%$ 1710.05544 2b36.1 1μ DV 136 -10< 1' <1e-8. 3e-10< 1' <3e-91 1.0 16 BR($\tilde{t}_1 \rightarrow q\mu$)=100%, cos θ_t =1 2003 11956 $\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0}, \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$ $1-2e, \mu$ 139 0.2-0.32 Pure higasing ATLAS-CONF-2021-007 ≥6 jets 10^{-1} 1 Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Long Lived Particles Long Lived Particles (LLPs) predicted

- by any model withSmall couplings
 - Small mass splitting
 - Decays via off-shell particles

Small couplings

e.g. R-parity

violating SUSY

Long Lived Particles at ATLAS

Disappeared track ATLAS-CONF-2021-015

► Small mass gap between $\tilde{\chi}^{\pm 1}$ and $\tilde{\chi}^{01}$, long lifetime for $\tilde{\chi}^{\pm 1}$

- Analysis strategy
 - ≥ 1 "disappearing" tracklet, with only pixel layer hits

Displaced leptons <u>arXiv:2011.07812</u>

- Benchmark model
 - Sleptons \tilde{l} in GMSB model
 - Small coupling to gravitino gives *l* a long lifetime
- Light leptons not pointing to primary vertex

Efficier

- Two triggers
 - 1. Muon spectrometer
 - 2. Single/di-photon

No ID track required

[GeV]

100 200 300 400 500 600

Lifetime [ns]

10

10-

 10^{-31}

Stopped particles: R-hadron arXiv:2104.03050

GeV

Events / 50

10

10

0.5

200

400

600

800

Background

ATLAS

√s=13 TeV, 62.1 fb⁻¹

HHH. Total Background

Cosmics

Data

- SUSY LLP hadronised (R-hadrons) \triangleright
 - Stopped in the detector, decay later
- Search for jets in empty bunch crossings >
 - Low backgrounds Low trigger thresholds

LLP summary ATL-PHYS-PUB-2021-009

- BSM new physics extensively searched at ATLAS
 - Direct searches for new resonances
 - Indirectly searches via precise measurements
 - Unconventional signature to cover the phase space gap
- Knowledge on the physics at TeV scale significantly improved
- The job is clearly not done yet! New ideas needed on both theoretical and experimental sides

Workshop on Higgs physics, Nanjing, 27-31 August

- Higgs potential and BSM opportunity
 - <u>https://indico.ihep.ac.cn/event/14180/</u>
- Scope including
 - Higgs precise measurements, Higgs potential, EWPT, extra Higgs or scalars, etc.

Let's meet, drink and excite more Higgs bosons

LHC-ATLAS hopefully could give hint to those big questions

ATUS -

52

Search for Heavy Leptons

- Exclusion limits at $m(N, L^{\pm}) > 910 \text{ GeV}$
- Most stringent limits on type-III seesaw models at LHC

ATLAS Preliminary + Data

ZL CR DB CR RT CR VV VR VR 02 VR DB VR VV VL RT VR DB VR VR SR ZL SR QO SR ZL SR QO SR

 $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹ $\frac{777}{7777}$ Total SM

FNP

Diboson

Rare top Other

Events

10

10²

10

2.5

.......

- Motivation
 - uncoloured + neutral LLPs produced in SM Higgs decay
 - scalar/pseudoscalar mediators to a dark sector
- Benchmark: pseudoscalars, 15<m_a<55 GeV, 10mm <cτ< 1m</p>
- Higgs production mode
 - ZH allows leptons to trigger and suppress QCD backgrounds

\geq 3 tracks to suppress SM vertiex

Search for Heavy Leptons

- Search for heavy leptons in events with 3/4 leptons
- Benchmark model
 - Type-III seesaw model which provides a heavy Majorana neutrino that could explain small neutrino mass
 - Extra fermionic $SU(2)_L$ triplet coupled to W, Z, H bosons
- Phenomenology similar to other models with heavy leptons, like Vector-Like Lepton triplets that could be linked to g-2 anomaly
- Dominant backgrounds: WZ, ZZ (diboson) and "rare top" production (ttV, ttH, tWZ)

- Discrepancy may be explained by
 - Leptoquark
 - Vector-like leptons
 - SUSY smuons, ...

Long Lived Particles at ATLAS

For selected subset of events, run dedicated "large radius tracking" (LRT), excluding the hit used by prompt tracking

- Backgrounds
 - Cosmic muons
 - Mis-reconstructed objects (fake tracks, pileup contamination, ...)
 - Material interactions in detector components
 - Beam-induced backgrounds
- Not possible to simulate them well

arXiv:2103.16558

Figure 3.3: LHC constraints for the U_1 vector leptoquark for the benchmark scenarios with $\beta_R^{b\tau} = 0$ (left) and $\beta_R^{b\tau} = -1$ (right). The 1σ and 2σ regions obtained from the fit to low-energy data are also shown.

Search for LFV decays $Z \rightarrow l\tau EXOT-2018-36/$

➤ Z→ℓτ via neutrino mixing at Br≈10⁻⁵⁴ in SM, enhanced significantly in BSM

Z→eµ

Z→τe

Ζ→τι

> $Z \rightarrow \ell \tau$ search complements low-energy searches, eg $\tau \rightarrow \gamma \mu, 3 \mu$

Observed upper limits on B(Z→LFV decay) x 10-7