Revisit to the b $\rightarrow c\tau v$ transition: in and beyond the SM

唐儒英

第十五届TeV物理工作组学术研讨会 2021.7.19

DOI: 10.1016/j.nuclphysb.2021.115354

- Lepton Flavor Universality
- $R(D^{(*)})$
- Motivation
- Form Factors
- Fit of the Heavy Quark Effective Theory Parameters
- Analyses of New Physics
- Summary and Conclusions

Lepton Flavor Universality

• Leptons of different generations have same couplings in the SM

$$\begin{array}{ccc} Experiment & Theory(SM) \\ \hline \frac{\Gamma_{K^- \to e^- \bar{\nu}_e}}{\Gamma_{K^- \to \mu^- \bar{\nu}_{\mu}}} & (2.488 \pm 0.009) \times 10^{-5} & (2.477 \pm 0.001) \times 10^{-5} \\ \frac{\Gamma_{\pi^- \to e^- \bar{\nu}_e}}{\Gamma_{\pi^- \to \mu^- \bar{\nu}_{\mu}}} & (1.230 \pm 0.004) \times 10^{-5} & (1.2352 \pm 0.0001) \times 10^{-5} \\ \frac{\Gamma_{D_s^- \to \tau^- \bar{\nu}_{\tau}}}{\Gamma_{D_s^- \to \mu^- \bar{\nu}_{\mu}}} & 9.95 \pm 0.61 & 9.76 \pm 0.10 \end{array}$$

Simone Bifani et al 2019 J. Phys. G: Nucl. Part. Phys. 46 023001

$R(D^{(*)})$ and $R(K^{(*)})$

• $B \rightarrow D^{(*)}lv \ (b \rightarrow clv)$:

Difference between third generation and the first two generations Deviation from the SM: $3 \sim 4\sigma$

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}, \quad \text{with } \ell = \mu, e$$

•
$$B \rightarrow K^{(*)}l^+l^-$$
 (b \rightarrow s l^+l^-):

Difference between first and second generation

Deviation from the SM: $R(K) = \frac{\int_{q_{min}}^{q_{max}^2} \frac{d\Gamma(B \to K^{(*)}\mu^+\mu^-)}{dq^2} dq^2}{\int_{q_{min}}^{q_{max}^2} \frac{d\Gamma(B \to K^{(*)}\mu^+\mu^-)}{dq^2} dq^2} R(K^*) \quad 2.1 \sim 2.5\sigma$

$R(D^{(*)})$ Experimental Status

• The combined results of $R(D^{(*)})$ indicate about 3σ deviation from the SM predictions

https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/main.shtml

Motivation

- $R(D^{(*)})$ anomaly may imply New physics Effect.
- Study of form factors allow us to give more reliable predictions for $R(D^{(*)})$.
- In light of recent data of $R(D^{(*)})$ and the updated form factors, the analyses of New physics can be performed.

Form Factors

Hadronic matrix element:

$$f_{-}(q^{2}) = \frac{m_{B}^{2} - m_{D}^{2}}{q^{2}}(f_{0}(q^{2}) - f_{+}(q^{2}))$$

$$\langle D(p') | \bar{c} \gamma^{\mu} b | \bar{B}(p) \rangle = f_{+}(q^{2})(p + p')^{\mu} + f_{-}(q^{2})(p - p')^{\mu}$$
$$q = p - p'$$

In SM:

$$\begin{aligned} \frac{d\Gamma(B \to D\ell\nu)}{dq^2} &= \frac{G_F^2 |V_{cb}|^2 \eta_{EW}^2}{192\pi^3 m_B^3} \frac{k}{(q^2)^{\frac{5}{2}}} (q^2 - m_\ell^2)^2 [4k^2 q^2 (2q^2 + m_\ell^2) |f_+|^2 + 3m_\ell^2 |f_0|^2] \\ \frac{d\Gamma(B \to D^*\ell\nu)}{dq^2} &= \frac{G_F^2 |V_{cb}|^2 \eta_{EW}^2}{192\pi^3 m_B^3} \frac{k}{(q^2)^{\frac{5}{2}}} (q^2 - m_\ell^2)^2 \left\{ (2q^2 + m_\ell^2) [2q^2 |f|^2 + |\mathcal{F}_1|^2 + 2k^2 (q^2)^2 |g|^2] \\ &+ 3m_\ell^2 k^2 q^2 |\mathcal{F}_2|^2 \right\} \end{aligned}$$
Where $k = \sqrt{\frac{[(m_B + m_{D^{(*)}})^2 - q^2][(m_B + m_{D^{(*)}})^2 - q^2]}{4q^2}} \qquad R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}, \quad \text{with } \ell = \mu, e$

C.G. Boyd, B. Grinstein and R.F. Lebed, Precision corrections to dispersive bounds on form-factors, Phys. Rev. D 56 (1997) 6895

Calculation of Form Factors

• Small recoil(Near Max point of q^2):

Lattice QCD

• Large recoil(Near $q^2 = 0$):

Light Cone Sum Rule, Perturbative QCD...

• Extrapolation of Form factors:

Pole model \oplus z expansion

Specific Parameterization:

Boyd-Grinstein-Lebed (BGL)

Bourrelly-Caprini-Lellouch (BCL)

Heavy quark effective theory

Specific Parameterization:

Caprini-Lellouch-Neubert (CLN)

Form Factors in Heavy Quark Effective Theory

$$\begin{split} h_{+} &= \xi(w)(1 + \frac{\alpha_{s}}{\pi}(C_{V_{1}} + \frac{w+1}{2}(C_{V_{2}} + C_{V_{3}})) + (\varepsilon_{c} + \varepsilon_{b})L_{1}(w) + \varepsilon_{c}^{2} \,\delta h_{+}) \\ h_{-} &= \xi(w)(\frac{\alpha_{s}}{\pi}\frac{w+1}{2}(C_{V_{2}} - C_{V_{3}}) + (\varepsilon_{c} - \varepsilon_{b})L_{4}(w)) \\ f_{+} &= \frac{m_{B} + m_{D}}{2\sqrt{m_{B}m_{D}}} \begin{pmatrix} h_{+} - \frac{m_{B} - m_{D}}{m_{B} + m_{D}} \end{pmatrix} \\ f_{0} &= \frac{\sqrt{m_{B}m_{D}}}{m_{B} + m_{D}}(1 + w) \begin{pmatrix} h_{+} - \frac{m_{B} + m_{D}}{m_{B} - m_{D}}\frac{w-1}{w+1} \end{pmatrix} \\ where \ w &= \frac{m_{B}^{2} + m_{D^{(*)}}^{2} - q^{2}}{2m_{B}m_{D^{(*)}}} , \\ L_{1} &= -4(w - 1)\chi_{2} + 12\chi_{3}, \ L_{2} &= -4\chi_{3}, \ L_{3} &= 4\chi_{2}, \ L_{4} &= 2\eta - 4, \ L_{5} &= -1, \ L_{6} &= -2\frac{1 + \eta}{w + 1} \\ \\ \text{Corrections} \ \mathcal{O}(\alpha_{s}), \ \mathcal{O}\left(\frac{\Lambda_{QCD}}{m_{bc}}\right), \ \mathcal{O}\left(\frac{\Lambda_{QCD}^{2}}{m_{c}^{2}}\right) \\ &= \frac{1 - 8\rho^{2}\sqrt{1 + w} - \sqrt{2}}{\sqrt{1 + w} + \sqrt{2}} + (64c - 16\rho^{2})\left(\frac{\sqrt{1 + w} - \sqrt{2}}{\sqrt{1 + w} + \sqrt{2}}\right)^{2} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}(1)}(w - 1)} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}}(1)w - 1} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1}{\chi_{3}}(1)w - 1} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3} &= \frac{1 - 9(1) + \eta'(1)w - 1}{\chi_{3}}} \\ &= \frac{1 - 9(1) + \eta'(1)w - 1$$

I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of $B \rightarrow D^{(*)}$ lepton anti-neutrino form-factors, Nucl. Phys. B 530 (1998) 153

Fit of the Heavy Quark Effective Theory Parameters

$$f_{i} = \frac{1}{P_{i}(z)\Phi_{i}(z)} \sum_{n=0}^{+\infty} a_{n}^{i} z^{n} = h_{i,HQET}(z)$$

$$\sum_{i=1}^{7} \sum_{n=0}^{2} (a_{1^{-},n}^{i})^{2} \leq 1, \sum_{i=1}^{7} \sum_{n=0}^{2} (a_{1^{+},n}^{i})^{2} \leq 1, \sum_{i=1}^{3} \sum_{n=0}^{2} (a_{0^{-},n}^{i})^{2} \leq 1, \sum_{i=1}^{3} \sum_{n=0}^{2} (a_{0^{+},n}^{i})^{2} \leq 1$$

$$a_{0,1,2}^{f_{i}}(\rho^{2}, c, \chi_{2}(1), \chi_{2}'(1), \chi_{3}'(1), \eta(1), \eta'(1), \delta h_{+}, \delta h_{A_{1}}, \delta h_{T_{1}})$$

- Lattice QCD results
- Light-cone sum rule results
- \bullet Masses of B_c given by experiment, Lattice QCD and model calculation

Fit of the Heavy Quark Effective Theory Parameters

• Results :

$\chi_2(1)$	$\chi_2'(1)$	$\chi_3'(1)$	$\eta(1)$	$\eta'(1)$
0.133(23)	-0.149(19)	0.017(8)	0.365(28)	0.239(114)
ρ^2	С	$\delta_{h_{A_1}}$	δ_{h_+}	$\delta_{h_{T_1}}$
1 100(00)	0.000(010)	1.004(000)	0.000(100)	
1.120(28)	0.932(212)	-1.304(202)	0.032(133)	-4.888(1975)

 $R(D)=0.289\pm0.005$ $R(D^*)=0.237\pm0.008$

Analysis of New Physics

- Model independent
- Detailed models:

NP models

Constrained by

W'

High p_T exprimensts

Charged Higgs

 B_c life time, $\mathcal{B}(B_c \to \tau \nu)$

Leptoquark

	R_D	R_{D^*}	Correlation	$P_{ au}(D^*)$	$R_{J/\psi}$	$F_L^{D^*}$
BaBar	0.440(58)(42)	0.332(24)(18)	-0.27	—	—	—
Belle	0.375(64)(26)	0.293(38)(15)	-0.49	—	—	—
Belle	—	0.302(30)(11)	—	—	—	—
Belle	—	$0.270(35)(^{+0.028}_{-0.025})$	0.33	$-0.38(51)(^{+0.21}_{-0.16})$	—	—
LHCb	—	0.336(27)(30)	—	_	—	—
LHCb	—	0.291(19)(26)(13)	—	—	—	—
Belle	0.307(37)(16)	0.283(18)(14)	-0.54	—	—	—
LHCb	—	—	—	—	0.71(17)(18)	—
Belle	_	_	_	_	_	0.60(8)(4)

Experimental data used in the fits

$$\chi^{2}(C_{X}) = \sum_{m,n=1}^{\text{data}} (O^{th}(C_{X}) - O^{exp})_{m} (V^{exp} + V^{th})_{mn}^{-1} (O^{th}(C_{X}) - O^{exp})_{n} + \frac{(R^{th}_{J/\psi}(C_{X}) - R^{exp}_{J/\psi})^{2}}{\sigma^{2}_{R_{J/\psi}}} + \frac{(F^{D^{*th}}_{L}(C_{X}) - F^{D^{*exp}}_{L})^{2}}{\sigma^{2}_{F^{D^{*}}_{L}}}$$

13

Effective Hamiltonian with New Physics

• Weak effective Hamiltonian:

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_1})\mathcal{O}_{V_1} + C_{V_2}\mathcal{O}_{V_2} + C_{S_1}\mathcal{O}_{S_1} + C_{S_2}\mathcal{O}_{S_2} + C_T\mathcal{O}_T \right] + \text{H.c.}$$

• The four-fermion operator allowed in $b \rightarrow c\tau v$ transition:

$$\mathcal{O}_{S_1} = (\overline{c}_L b_R)(\overline{\tau}_R \nu_L), \quad \mathcal{O}_{S_2} = (\overline{c}_R b_L)(\overline{\tau}_R \nu_L) \\ \mathcal{O}_{V_1} = (\overline{c}_L \gamma^\mu b_L)(\overline{\tau}_L \gamma_\mu \nu_L), \quad \mathcal{O}_{V_2} = (\overline{c}_R \gamma^\mu b_R)(\overline{\tau}_L \gamma_\mu \nu_L) \\ \mathcal{O}_T = (\overline{c}_R \sigma^{\mu\nu} b_L)(\overline{\tau}_R \sigma_{\mu\nu} \nu_L)$$

2σ Constraints on the NP Wilson Coefficients

2σ Constraints on the NP Wilson Coefficients

2σ Constraints on the NP Wilson Coefficients

Exclusion

NP scenario	value (with $\mathcal{B}(B_c \to \tau \nu) < 0.1$)	χ^2/dof	Correlation
V_1	$(1 + Re[C_{V_1}])^2 + (Im[C_{V_1}])^2 = 1.236(38)$	13.70/11	_
V_2	$-0.030(34) \pm 0.460(52)i$	12.92/11	±0.59
<i>S</i> ₁	0.245 + 0.000i	32.77/11] –
S_2	$0.072 \pm 0.461i$	39.10/11	_
Т	$0.011(62) \pm 0.165(60)i$	16.79/11	±0.98
(S_1, S_2)	(-0.785, -1.041)	32.01/11	

- S_1 , S_2 and (S_1, S_2) are excluded
- Those models which only generate scalar operators are excluded

Scenario	R(D)	$R(D^*)$	$P_{\tau}(D)$	$P_{\tau}(D^*)$	Scenario	R(D)	$R(D^*)$	$P_{\tau}(D)$	$P_{\tau}(D^*)$
SM	0.289(5)(0)	0.237(8)(0)	0.328(3)(0)	-0.490(5)(0)	(V_1, T)	0.336(6)(30)	0.299(10)(15)	0.340(3)(15)	-0.479(4)(17)
V_1	0.358(6)(11)	0.293(10)(9)	0.328(3)(0)	-0.490(5)(0))	(V_2, S_1)	0.318(6)(30)	0.297(10)(13)	0.523(3)(39)	-0.447(7)(10)
V_2	0.334(6)(30)	0.300(10)(12)	0.328(3)(0)	-0.490(5)(1)	(V_2, S_2)	0.333(6)(32)	0.299(10)(12)	0.587(3)(43)	-0.535(3)(9)
Т	0.300(5)(26)	0.303(21)(34)	0.314(3)(48)	-0.357(25)(75)	(V_2, T)	0.328(6)(28)	0.299(21)(12)	0.396(2)(12)	-0.402(12)(23)
(V_1, V_2)	0.333(6)(31)	0.300(10)(13)	0.328(3)(0)	-0.490(5)(1)	(S_1, T)	0.337(6)(29)	0.299(13)(12)	0.486(3)(41)	-0.428(5)(9)
(V_1, S_1)	0.337(6)(30)	0.298(10)(12)	0.268(3)(87)	-0.502(4)(16)	(S_2, T)	0.333(6)(29)	0.300(15)(12)	0.487(3)(44)	-0.463(7)(13)

 $(V_1, S_2) \quad 0.332(5)(30) \quad 0.300(10)(12) \quad 0.264(3)(74) \quad -0.478(5)(14)$

Predictions for the Observables

Scenario	$F_L^{D^*}$	$\mathcal{A}_{FB}(D)$	$A_{FB}(D^*)$	Scenario	$F_L^{D^*}$	$\mathcal{A}_{FB}(D)$	$A_{FB}(D^*)$
SM	0.467(4)(0)	0.360(1)(0)	-0.057(6)(0)	(V_1,T)	0.463(4)(7)	0.352(1)(10)	-0.039(4)(25)
V_1	0.467(4)(0)	0.360(1)(0)	-0.057(6)(0)	(V_2, S_1)	0.491(4)(4)	0.327(2)(9)	0.003(3)(9)
V_2	0.470(4)(3)	0.360(1)(0)	0.016(4)(10)	(V_2, S_2)	0.463(4)(3)	0.311(2)(12)	-0.031(4)(8)
Т	0.401(13)(40)	0.357(1)(25)	0.013(15)(20)	(V_2,T)	0.423(7)(12)	0.310(2)(9)	0.011(9)(9)
(V_1, V_2)	0.470(4)(3)	0.360(1)(0)	0.318(5)(9)/-0.047(4)(11)	(S_1,T)	0.459(5)(7)	0.313(2)(8)	0.012(6)(9)
(V_1, S_1)	0.463(4)(6)	0.365(1)(7)	-0.063(4)(9)	(S_2, T)	0.440(5)(4)	0.309(2)(10)	-0.007(7)(12)

 $(V_1, S_2) \quad 0.472(4)(5) \quad 0.365(1)(5) \quad -0.050(4)(7)$

Leptoquark

	SM quantum number $[SU(3) \times SU(2) \times U(1)]$	Spin	Fermions coupled to
R_2	(3, 2, 7/6)	0	$ar{c}_R u_L, ar{b}_L au_R$
S_1	$(ar{3},1,1/3)$	0	$ar{b}^c_L u_L, ar{c}^c_L au_L, ar{c}^c_R au_R$
U_1	(3,1,2/3)	1	$ar{c}_L \gamma_\mu u_L, ar{b}_L \gamma_\mu au_L, ar{b}_R \gamma_\mu au_R$

• Lagrangian:

$$\mathcal{L}_{R_2} = \left(y_R^{b\tau} \bar{b}_L \tau_R + y_L^{c\tau} \bar{c}_R \nu_L \right) Y_{2/3} + \text{H.c.}$$

$$\mathcal{L}_{S_1} = \left((V_{\text{CKM}}^* y_L)^{c\tau} \bar{c}_L^c \tau_L - y_L^{b\tau} \bar{b}_L^c \nu_L + y_R^{c\tau} \bar{c}_R^c \tau_R \right) Y_{1/3} + \text{H.c.}$$

$$\mathcal{L}_{U_1} = \left((V_{\text{CKM}} x_L)^{c\tau} \bar{c}_L \gamma_\mu \nu_L + x_L^{b\tau} \bar{b}_L \gamma_\mu \tau_L + x_R^{b\tau} \bar{b}_R \gamma_\mu \tau_R \right) X_{2/3}^{\mu} + \text{H.c.}$$

2σ Constraints on the Leptoquark Couplings

Predictions for the Observables with LQ Model

LQ Type value (with $\mathcal{B}(B_c \to \tau \nu) < 0.1) \ \chi^2/dof$ corr

R_2 (-0.164(398), ±1.446(117))	22.87/11 ±0.29	Disfavoured
----------------------------------	----------------	-------------

 S_1 (0.936(270), 0.476(509)) 12.70/11 0.92

 S_1 (-13.224(270), -0.476(509)) 12.70/11 0.92

 U_1 (0.391(85), 0.061(86)) 13.17/11 0.78

 U_1 (-6.535(85), -0.061(86)) 13.17/11 0.78

LQ type	R(D)	$R(D^*)$	$P_{\tau}(D)$	$P_{ au}(D^*)$	$F_L^{D^*}$	$\mathcal{A}_{FB}(D)$	$A_{FB}(D^*)$
S_1	0.330(5)(29)	0.301(10)(13)	0.193(5)(145)	-0.474(7)(20)	0.480(4)(13)	0.375(1)(12)	-0.061(5)(5)
U_1	0.338(6)(30)	0.298(10)(12)	0.268(3)(87)	-0.502(4)(16)	0.463(4)(6)	0.365(1)(7)	-0.063(6)(9)

Summary and Conclusions

- Fit the parameters in the HQET parametrization including the $\mathcal{O}(\alpha_s, \Lambda_{\text{QCD}}/m_{b,c})$ corrections and part of $\mathcal{O}(\varepsilon_c^2)$ correlations
- Our calculations of $R(D^{(*)})$ in SM are smaller than the predictions of HFLAV and have ~4 σ deviation from the experiments
- The NP models that generate only scalar operators are ruled out, such as the charged Higgs models
- The R₂ Leptoquark model is disfavored to explain the $R(D^{(*)})$ anomalies
- Our calculations of $R(D^{(*)})$ in new physics scenario can well explain the experiments

Thank you!