

A high-quality axion from the non-minimal SU(6) GUT

南开大学物理科学学院陈宁

2021.07.20 十五届TeV物理工作组学术研讨会

based on <u>2106.00223</u> with 刘宇统,滕召隆

Background: GUT

Topics	Authors	Publications	Date
Fourth color unification	Pati, Salam	[5]	1974
SU(5) GUT	Georgi, Glashow	[6]	1974
SO(10) GUT	Fritzsch, Minkowski	[7]	1975
Peccei-Quinn mechanism	Peccei, Quinn	[8]	1977
Seesaw mechanism	Yanagida	[9]	1979
	Gell-Mann, Ramond, Slansky	[10]	1979
KSVZ axion	Kim	[11]	1979
	Shifman, Vainshtein, Zakharov	[12]	1980
SU(N+4) global symmetry	Dimopoulos, Raby, Susskind	[13]	1980
SUSY SU(5) GUT	Dimopoulos, Georgi	[14]	1981
DFSZ axion	Zhitnitsky	[15]	1980
	Dine, Fischler, Srednicki	[16]	1981
Axion in SU(5) GUT	Wise, Georgi, Glashow	[17]	1981
Leptogenesis	Fukugita, Yanagida	[18]	1986

Table 1: Collections of the major theoretical advances in the GUT and some related BSM physical issues listed in chronological order.

Background: GUT

- * In the minimal SU(5) GUT, Georgi & Glashow assumed: ``as few leptons (fermions) as possible, no unobserved leptons (fermions) ...".
- * Our assumption: a successful GUT can address as many BSM issues as possible, with the minimal set of fields unless otherwise necessary.
- * We consider the PQ-quality for the strong CP problem to start with, and we get more than that (see next).

Background: Strong CP

- * The strong CP problem, a topological term for the QCD vacuum $\mathcal{L}_{\theta} = \theta \frac{\alpha_{3c}}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu\,a}, \text{ and experimentally from the neutron EDM:}$ $|\bar{\theta}| \lesssim 10^{-10} \text{ , with } \bar{\theta} = \theta + \arg\det M_q \text{, very different from the } \mathcal{O}(1)$ expectation of θ parameter.
- * Peccei-Quinn mechanism: to replace θ by a periodic pseudo-scalar field transforming under a global $\mathrm{U}(1)_{\mathrm{PQ}}$ as $a \to a + 2\pi f_a$, with f_a known as the axion decay constant.
- * There is a classical window: $10^8\,\mathrm{GeV} \lesssim f_a \lesssim 10^{12}\,\mathrm{GeV}$ [cf. 1803.00993]. The lower bound CANNOT be violated, and the upper bound can be relaxed.
- * Axion induced potential: $V_{\rm QCD} = \Lambda_{\rm QCD}^4 [1 \cos(a/f_a)]$.

Background: Strong CP

* Invisible axion models such as Kim-Shifman-Vainshtein-Zakharov (KSVZ) and Dine-Fischler-Srednicki-Zhitnisky (DFSZ), a comes as a phase from a complex scalar field

$$\Phi \supset \frac{1}{\sqrt{2}} v_a \exp(ia/f_a).$$

* PQ quality: $U(1)_{PQ}$ symmetry (expressed in terms of Φ) is global and put in by hand in KSVZ/DFSZ models, and the gravity does not respect global symmetries. ['92 Barr, Seckel, Kamionkowski, March-Russell, Holman, Hsu, Kephart, Kolb, Watkins, Widrow.]

Background: Strong CP

- * A general operator of $\mathcal{O}_{PQ}^{d=2m+n} = k \frac{|\Phi|^{2m} \Phi^n}{M_{\rm pl}^{2m+n-4}} + H.c.$ ['92
 - Kamionkowski, March-Russell] $\Delta PQ = n$ with $PQ(\Phi) = 1$.
- * The $\mathcal{O}_{PQ}^{d=2m+n}$ shifts the $V_{\rm QCD}$ minima $|\bar{\theta}|=|\langle a\rangle/f_a|\lesssim 10^{-10}$
- * if $|k| \sim 10^{-2}$ and 2m+n=5, $\Rightarrow f_a \lesssim 10\,\mathrm{GeV}$, ruled out, else if $f_a \sim 10^{12}\,\mathrm{GeV}$ and 2m+n=5, $\Rightarrow |k| \lesssim 10^{-55}$, very fine-tuned.
- * NB, the renormalizable operators with $2m + n \le 4$ are even worse in terms of the PQ-quality. This suggests to consider the underlying gauge symmetry of the Φ .

Global Symmetries

- * The usual wisdom of a high-quality PQ is to have the $U(1)_{PQ}$ as an emergent global symmetry in a gauge theory.
- * The QCD has the global symmetries of $\mathcal{G}_{\text{global}} = \text{SU}(3)_L \otimes \text{SU}(3)_R \otimes \text{U}(1)_V \otimes \text{U}(1)_A \text{ , while QCD is vectorial.}$
- * The chiral gauge theory w.o. Unification: to put another confining sector with the SM, e.g. $SU(5)\otimes \mathcal{G}_{SM}$ by Gavela, Ibe, Quilez, and Yanagida [1812.08174].
- * Dimopoulos-Raby-Susskind (1980) studied a strongly-interacting theory: an anomaly-free SU(N+4) chiral gauge theory with N antifundamental fermions and one rank-2 anti-symmetric fermion, and it has $\mathcal{G}_{\text{global}} = SU(N) \otimes U(1)$, $N \geq 2$.

The SU(6) model

The SU(6) model

- * The minimal anomaly-free SU(6) has fermions of: $2 \times \bar{\mathbf{6}}_F \oplus \mathbf{15}_F$, with the global symmetry of $\mathcal{G}_{global} = SU(2)_F \otimes U(1)_{PQ}$.
- * How to break the SU(6) to the $\mathcal{G}_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$? The Georgi-Glashow SU(5) is a subgroup of the SU(6), while the direct breaking to the SU(5) is unwelcome. The sequential breaking of $SU(5) \rightarrow \mathcal{G}_{SM}$ leads to the proton decays with lower mass scale, hence faster decay rate.
- * Alternative pattern is: $\mathrm{SU}(6) \to \mathcal{G}_{331} \to \mathcal{G}_{\mathrm{SM}}$, with $\mathcal{G}_{331} = \mathrm{SU}(3)_c \otimes \mathrm{SU}(3)_L \otimes \mathrm{U}(1)_N$. This is achievable with an adjoint Higgs of $\mathbf{35_H}$ at the GUT scale (1974 Ling-Fong Li).

The SU(6) Higgs sector

- * minimal Higgs sector: $6_{H}^{lpha=I,II}$, 15_{H} , 21_{H} , 35_{H}
- * Hierarchies of Higgs VEVs: $\langle \mathbf{35_H} \rangle \sim \Lambda_{\mathrm{GUT}}$, $\langle \mathbf{6_H^{II}} \rangle = v_3$, $\langle \mathbf{21_H} \rangle = v_6$, $v_3 \sim v_6 \sim v_{331}$ $\langle \mathbf{6_H^{I}} \rangle = v_d = v_{\mathrm{EW}} \sin \beta$, $\langle \mathbf{15_H} \rangle = v_u = v_{\mathrm{EW}} \cos \beta$ $\Lambda_{\mathrm{GUT}} \gg v_{331} \gg v_{\mathrm{EW}} = (\sqrt{2}G_F)^{-1/2} \simeq 246 \,\mathrm{GeV}$
- * ${f 6}_{
 m H}^{
 m II}$ and ${f 21}_{
 m H}$ are responsible for the ${\cal G}_{331} o {\cal G}_{
 m SM}$ breaking.
- * Two Higgs doublets from $\mathbf{6_H^I}$ (for d^i and ℓ^i) and $\mathbf{15_H}$ (for u^i) are responsible for the EWSB, and they are automatically type-II 2HDM.
- * One bonus: free from the μ -problem in the SUSY extension of the SU(5) GUT $W \supset \mu \mathbf{5_H^*5_H}$, since one cannot form $W \supset \mu \mathbf{6_H^{I^*}15_H}$ term in the SU(6).

The SU(6) fermions

SU(6)	\mathcal{G}_{331}	$\mathcal{G}_{ ext{SM}}$		
$oldsymbol{ar{6}_{F}^{I}}$	$({f ar 3},{f 1},+{1\over 3})^{ m I}_{f F}$	$({f ar 3},{f 1},+{ frac{2}{3}})^{ m I}_{f F}\ :\ \underline{d^c_R}$		
	$ig ({f 1},{f ar 3},-{rac{1}{3}})_{f F}^{ m I}$	$(1,2,-1)_{\mathbf{F}}^{\mathbf{I}}:\underline{(e_L,-\nu_L)}$		
		$(1,1,0)_{\mathbf{F}}^{\mathbf{I}}:N$		
$oldsymbol{ar{6}_{F}^{II}}$	$({f ar 3},{f 1},+{1\over 3})^{ m II}_{f F}$	$({f ar 3},{f 1},+{2\over 3})^{ m II}_{f F}\ :\ D^c_R$		
	$oxed{({f 1},{f ar{3}},-rac{1}{3})^{ m II}_{f F}}$	$(1,2,-1)_{\mathbf{F}}^{\mathrm{II}}:(e_L',-\nu_L')$		
		$(1,1,0)_{\mathbf{F}}^{\mathrm{II}}:\dot{N}'$		
$15_{ m F}$	$({f ar 3},{f 1},-{rac{2}{3}})_{f F}$	$(\bar{\bf 3},{\bf 1},-{\textstyle\frac{4}{3}})_{\bf F}\ :\ \underline{u_R^c}$		
	$({f 1},{f ar 3},+{rac{2}{3}})_{f F}$	$(1,2,+1)_{\mathbf{F}} : (\nu_R'^c,e_R'^c)$		
		$({\bf 1},{\bf 1},+2)_{\bf F} : \underline{e_R^c}$		
	$({f 3},{f 3},0)_{f F}$	$(3,2,+\frac{1}{3})_{\mathbf{F}} : \underline{(u_L,d_L)}$		
		$({f 3},{f 1},-{rac{2}{3}})_{f F}\ :\ {\it D}_{{f L}}$		

The (D_L, D_R^c) are KSVZ vector-like quarks with masses $\sim f_a$ and Q=-1/3.

* The most general Yukawa coupling: $15_F \bar{6}_F^\alpha 6_H^{\alpha*} + 15_F 15_F 15_H + \bar{6}_F^\alpha (i\sigma_2)_{\alpha\beta} \bar{6}_F^\beta 21_H + H.c.$

* The PQ charge and a discrete \mathbb{Z}_4 symmetry (for PQ quality):

	$oldsymbol{ar{6}_{F}}^{lpha}$	15_{F}	$\mathbf{6_H^{lpha}}$	$15_{\rm H}$	$21_{\rm H}$	$35_{\rm H}$
$U(1)_{PQ}$	1	1	2	-2	-2	0
$SU(2)_{\rm F}$		1		1	1	1
\mathbb{Z}_4	1	$\frac{1}{2}$	$\frac{3}{2}$	-1	-2	0

At the UV the global $U(1)_{PQ}[SU(6)]^2$ anomaly: $N_{SU(6)} = 9$

The SU(6) Axion

The SU(6) Axion

* The physical axion field comes from: $\mathbf{6_H^{II}} \supset (\mathbf{1},\mathbf{3},+\frac{1}{3})_H^{II} \supset \frac{v_3}{\sqrt{2}} \exp(ia_3/v_3)$

and
$$21_{H} \supset (1,6,+\frac{2}{3})_{H} \supset \frac{v_{6}}{\sqrt{2}} \exp(ia_{6}/v_{6})$$

- * To impose an orthogonality condition between the U(1)_{PQ} $J^{\mu}_{PQ} = q_3 v_3 (\partial^{\mu} a_3) + q_6 v_6 (\partial^{\mu} a_6) \text{ and the U}(1)_N J^{\mu}_N = \frac{1}{3} v_3 (\partial^{\mu} a_3) + \frac{2}{3} v_6 (\partial^{\mu} a_6)$ currents. Physical charge: $q \equiv c_1 \, PQ + c_2 \, N$.
- * 't Hooft global anomaly matching: $N_{{\rm SU}(3)_c}=N_{{\rm SU}(6)} \Rightarrow c_1=1.$
- * $a_{\text{phys}} = \cos \phi \, a_3 + \sin \phi \, a_6$, $\tan \phi = \frac{v_3}{2v_6}$.
- * Axion decay const: $9v_{331}^{-2} = \frac{1}{4}v_6^{-2} + v_3^{-2}$ and $f_a = v_{331}/18$.

The PQ quality

* The leading PQ-breaking operator respecting the $SU(2)_F$ and \mathbb{Z}_4 :

$$\mathcal{O}_{p\varnothing}^{d=6} = \left[\epsilon_{\alpha\beta} \mathbf{6}_{\mathbf{H}}^{\alpha*} \mathbf{6}_{\mathbf{H}}^{\beta*} \mathbf{15}_{\mathbf{H}} \right]^{2}$$

$$\supset \left[\epsilon_{\alpha\beta} \epsilon_{abc} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{a,\alpha} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{b,\beta} (\mathbf{1}, \mathbf{3}, -\frac{2}{3})^{c} \right]^{2}$$
if no \mathbb{Z}_{4} : $\mathcal{O}_{p\varnothing}^{d=3} = \epsilon_{\alpha\beta} \epsilon_{abc} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{a,\alpha} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{b,\beta} (\mathbf{1}, \mathbf{3}, -\frac{2}{3})^{c}$ is dangerous in PQ-quality.

* Axion effective potential:

$$V = -\Lambda_{\text{QCD}}^4 \cos\left(\frac{a_{\text{phys}}}{f_a}\right) + \frac{|k|(v_u v_d v_3)^2}{4M_{\text{pl}}^2} \cos\left(\frac{a_{\text{phys}}}{6f_a} + \delta\right)$$

*
$$|\bar{\theta}| \equiv \left| \frac{\langle a_{\text{phys}} \rangle}{f_a} \right| \lesssim 10^{-10} \Rightarrow f_a \lesssim \frac{3.7 \times 10^7 \cos \phi}{|k \sin(\delta)|^{1/2}} (\tan \beta + \frac{1}{\tan \beta}) \text{ GeV}$$

This is solely determined by the symmetry consideration in the SU(6) GUT!

The PQ quality

$$10^8 \, \mathrm{GeV} \lesssim f_a \lesssim 10^{10} \, \mathrm{GeV}$$

$$10^8 \,\text{GeV} \lesssim f_a \lesssim 10^{10} \,\text{GeV}$$
 $m_a = 5.70 \left(\frac{10^{12} \,\text{GeV}}{f_a}\right) \mu \text{eV} \sim (10^{-4}, 10^{-2}) \text{eV}$

The axion searches

$$g_{a\gamma\gamma} = \left(\frac{E}{N_{\text{SU(3)}_c}} - 1.92\right) \left(\frac{1.14 \times 10^{-3} \,\text{GeV}}{f_a}\right) \,\text{GeV}^{-1}$$

 $U(1)_{PQ}[U(1)_{em}]^2$ anomaly factor : $E = \sum_f PQ_f \dim(\mathscr{C}_f) \operatorname{Tr} q_f^2 = 24$ $\frac{E}{N_{SU(3)_c}} = \frac{8}{3} \Rightarrow A$ KSVZ axion with the DFSZ coupling

The Axion domain walls

* Back to the axion effective potential:

$$V = \Lambda_{\text{QCD}}^{4} [1 - \cos(\frac{a_{\text{phys}}}{f_a})] + \frac{|k| (v_u v_d v_3)^2}{4M_{\text{pl}}^2} \cos(\frac{a_{\text{phys}}}{6f_a} + \delta)$$

- * The PQ-breaking term can avoid the cosmologically dangerous domain walls from the first periodic term.
- * In our case:

The SU(6) Unification

The SU(6) unification (one-loop)

- * The gauge couplings: $(\alpha_{3c}, \alpha_{3L}, \alpha_N)$ for the \mathcal{G}_{331} , and $(\alpha_{3c}, \alpha_{2L}, \alpha_Y)$ for the \mathcal{G}_{SM} . Use $\alpha_1 = \frac{4}{3}\alpha_N$ for the \mathcal{G}_{331} embedding into the SU(6).
- * non-SUSY: $m_Z \le \mu \le v_{331}$: $(b_{SU(3)_c}^{(1)}, b_{SU(2)_L}^{(1)}, b_{U(1)_Y}^{(1)}) = (-7, -3, 7)$ $v_{331} \le \mu \le \Lambda_{GUT}$: $(b_{SU(3)_c}^{(1)}, b_{SU(3)_L}^{(1)}, b_{U(1)_1}^{(1)}) = (-5, -\frac{11}{3}, \frac{43}{6})$

* SUSY:

$$m_Z \le \mu \le v_{331} : (b_{SU(3)_c}^{(1)}, b_{SU(2)_L}^{(1)}, b_{U(1)_Y}^{(1)}) = (-3, 1, 11)$$

 $v_{331} \le \mu \le \Lambda_{GUT} : (b_{SU(3)_c}^{(1)}, b_{SU(3)_L}^{(1)}, b_{U(1)_1}^{(1)}) = (0, \frac{13}{2}, \frac{29}{2})$

 * SUSY extension: $\mathbf{21}_{H}$ super-multiplet is anomalous, we include a $\overline{\mathbf{21}}_{H}$.

The SU(6) unification (one-loop)

 $\alpha_{3c}(m_Z)$, $\alpha_{\rm em}(m_Z)$, $\sin^2\theta_W(m_Z)$ as inputs

The SU(6) unification (one-loop)

- * To impose the unification condition at the UV: $\alpha_{3c}^{-1}(\Lambda_{\rm GUT}) = \alpha_{3L}^{-1}(\Lambda_{\rm GUT}) = \alpha_1^{-1}(\Lambda_{\rm GUT}) = \alpha_1^{-1}(\Lambda_{\rm GUT})$
- * Benchmark $v_{331} = 5.7 \times 10^{10}\,\mathrm{GeV}$, we find: $\Lambda_{\mathrm{GUT}} \approx 7.8 \times 10^{15}\,\mathrm{GeV}$, $\alpha_{\mathrm{GUT}}^{-1}(\Lambda_{\mathrm{GUT}}) = 18.14$ $\sin^2\theta_W(m_Z) = 0.22923$ PDG: $\sin^2\theta_W(m_Z) = 0.23117 \pm 0.00016$
- * Proton lifetime:

$$\tau[p \to e^{+}\pi^{0}] \sim 10^{36} \, \text{yrs} \left(\frac{\alpha_{\text{GUT}}^{-1}}{35}\right)^{2} \left(\frac{\Lambda_{\text{GUT}}}{10^{16} \, \text{GeV}}\right)^{4}$$

 $\approx 9.8 \times 10^{34} \, \text{yrs}$

SK limit: $\tau_p \gtrsim 2.4 \times 10^{34} \, \mathrm{yrs}$, can be probed in the future HyperK.

Summary

- * We show a non-minimal SU(6) GUT model with the minimal setup to achieve a high-quality axion by identifying the $U(1)_{PQ}$ as the Abelian component of the emergent global symmetries.
- * The axion decay constant: $10^8\,{\rm GeV} \lesssim f_a \lesssim 10^{10}\,{\rm GeV}$ purely from the symmetry consideration, w.o. much fine-tuning of the EFT parameter.
- * The GUT spectrum contains vector-like KSVZ D-quarks, and heavy leptons && singlet neutrinos, type-I seesaw.
- * Safe from the cosmological constraints.
- * The origin of the discrete symmetries?
- * The improved RGEs, with two-loops and the mass threshold effects.

Backups

* At the $\mathcal{G}_{331} \to \mathcal{G}_{SM}$ breaking:

$$15_{\rm F}6_{\rm F}^{\rm II}6_{\rm H}^{\rm II*} + H.c. \supset$$

$$(\mathbf{3},\mathbf{3},0)_{\mathbf{F}} \otimes (\bar{\mathbf{3}},\mathbf{1},+\frac{1}{3})_{\mathbf{F}}^{\mathbf{II}} \otimes (\mathbf{1},\bar{\mathbf{3}},-\frac{1}{3})_{\mathbf{H}}^{\mathbf{II}} + H.c.$$

$$(\mathbf{1}, \mathbf{\bar{3}}, +\frac{2}{3})_{\mathbf{F}} \otimes (\mathbf{1}, \mathbf{\bar{3}}, -\frac{1}{3})_{\mathbf{F}}^{\mathbf{II}} \otimes (\mathbf{1}, \mathbf{\bar{3}}, -\frac{1}{3})_{\mathbf{H}}^{\mathbf{II}} + H.c.$$

$$\Rightarrow m_D \sim m_{e'} \sim m_{\nu'} \simeq \mathcal{O}(v_{331})$$

D -hadron lifetime: $\tau_D \sim m_D^{-1} \sim \mathcal{O}(10^{-36}) - \mathcal{O}(10^{-34})$ sec, Vs. the BBN constraint of $\tau_Q \lesssim 10^{-2}$ sec.

*
$$\bar{\mathbf{6}}_{\mathbf{F}}^{[I]} \bar{\mathbf{6}}_{\mathbf{F}}^{[I]} \mathbf{21}_{\mathbf{H}} + H.c. \supset$$

$$(\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \mathbf{6}, +\frac{2}{3})_{\mathbf{H}} + H.c.$$

$$\Rightarrow m_{N,N'} \simeq \mathcal{O}(v_{331})$$

*
$$\mathbf{15_F} \mathbf{\bar{6}_F}^I \mathbf{6_H}^{I*} + H.c. \supset$$
 $(\mathbf{3}, \mathbf{2}, +\frac{1}{3})_F \otimes (\bar{\mathbf{3}}, \mathbf{1}, +\frac{2}{3})_F^I \otimes (\mathbf{1}, \mathbf{2}, -1)_H^I + H.c.$
 $(\mathbf{1}, \mathbf{2}, -1)_F \otimes (\mathbf{1}, \mathbf{1}, +2)_F^I \otimes (\mathbf{1}, \mathbf{2}, -1)_H^I + H.c.$
 $\Rightarrow m_{d,\ell} \simeq \mathcal{O}(v_{\mathrm{EW}})$
 $\mathbf{15_F} \mathbf{15_F} \mathbf{15_H} + H.c. \supset$
 $(\mathbf{3}, \mathbf{2}, +\frac{1}{3})_F \otimes (\bar{\mathbf{3}}, \mathbf{1}, -\frac{4}{3})_F^I \otimes (\mathbf{1}, \mathbf{2}, +1)_H + H.c.$
 $\Rightarrow m_u \simeq \mathcal{O}(v_{\mathrm{EW}})$
The EW EFT = type-II 2HDM

*
$$\bar{\mathbf{6}}_{\mathbf{F}}^{[I]} \mathbf{15}_{\mathbf{H}} + H.c. \supset$$

 $(\mathbf{1}, \mathbf{2}, -1)_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \mathbf{1}, 0)_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \mathbf{2}, +1)_{\mathbf{H}} + H.c.$
 $\Rightarrow m_{\nu N'} \sim m_{\nu' N} \simeq \mathcal{O}(\nu_{\text{EW}})$

* Type-I seesaw:
$$(\nu, N')\mathcal{M}(\nu, N')^T \Rightarrow m_{\nu} \sim \frac{v_{\rm EW}^2}{v_{331}}, m_{N'} \sim v_{331}$$

The SU(6) fermions

- * To obtain the spectrum: $N=\frac{1}{3}\mathrm{diag}(-\mathbb{I}_3\,,+\mathbb{I}_3)$ for the $\mathrm{SU}(6)$ fundamental, and $Y=\mathrm{diag}(\frac{1}{3}+2N,\frac{1}{3}+2N,-\frac{2}{3}+2N)$ for the $\mathrm{SU}(3)_L$ fundamental.
- * In the SU(5) GUT: $\bar{\mathbf{5}}_{\mathbf{F}} = d_R^c \oplus \mathscr{C}_L$, $\mathbf{10}_{\mathbf{F}} = q_L \oplus u_R^c \oplus e_R^c$
- * In the SU(6) GUT: $\bar{\mathbf{6}}_{\mathbf{F}}^{\mathrm{I}} \supset d_{R}^{c} \oplus \ell_{L}$, $\mathbf{15}_{\mathbf{F}} \supset q_{L} \oplus u_{R}^{c} \oplus e_{R}^{c}$
- * Additional SU(6) fermions are vectorial: (D_L, D_R^c) , (N, N'), $(\ell_L', \ell_R'^c)$