Higgs boson pair production via gluon fusion at N3LO in QCD

第十五届TeV物理工作组学术研讨会 北京,2021-7-19

★ Mass generations of gauge bosons: Higgs mechanism

★ Mass generations of gauge bosons: Higgs mechanism
★ Mass generations of fermions: Higgs mechanism & Yukawa couplings

★ Mass generations of gauge bosons: Higgs mechanism
★ Mass generations of fermions: Higgs mechanism & Yukawa couplings
★ Mass generations of scalars?

Mass generations of gauge bosons: Higgs mechanism
 Mass generations of fermions: Higgs mechanism & Yukawa couplings
 Mass generations of scalars?

Mass generations of gauge bosons: Higgs mechanism
 Mass generations of fermions: Higgs mechanism & Yukawa couplings
 Mass generations of scalars?

In some new physics models, the trilinear Higgs self-coupling may change by O(100)%, while the couplings with gauge bosons and fermions are still in agreement with SM.

Mass generations of gauge bosons: Higgs mechanism
 Mass generations of fermions: Higgs mechanism & Yukawa couplings
 Mass generations of scalars?

In some new physics models, the trilinear Higgs self-coupling may change by O(100)%, while the couplings with gauge bosons and fermions are still in agreement with SM.

We need to measure the trilinear self coupling directly.

Phys.Rev.Lett. 122, 121803 (2019)

Non-resonant HH production at 13 TeV with about 36 fb^{-1}

Final state	collaboration	allowed κ_{λ} interval at 95% CL	
		observed	expected
bbbb	ATLAS	-11 - 20	-12 - 19
	CMS	-23 - 30	-15 - 23
$b\bar{b}\tau^{+}\tau^{-}$	ATLAS	-7.3 – 16	-8.8-17
	CMS	-18 - 26	-14 - 22
$bar{b}\gamma\gamma$	ATLAS	-8.1 -13	-8.2 - 13
	CMS	-11 - 17	-8.0 - 14
Combined	ATLAS	-5.0 - 12	-5.8 - 12
	CMS	-12 - 19	-7.1 - 14
Our combination	Both experiments	-6.8 - 14	-4.6 - 11

Why do we care about precision?

- 1. The measured numbers do not depend on the theoretical prediction, but the interpretation does.
- 2. As time goes by, the experimental uncertainties reduce definitely. Theoretical uncertainties will reduce only after we calculate higher-order corrections.
- 3. Renormalization and factorization scale uncertainties are intrinsic, especially for Higgs productions. How do we distinguish new physics signal from these theoretical uncertainties?

Q:How well is the approximation?

D.Y.Shao, C.S.Li, H.T.Li, JW, JHEP07(2013)169

gg>HH@NNLL

D.Y.Shao, C.S.Li, H.T.Li, JW, JHEP07(2013)169

$\lambda/\lambda_{\rm GM}$	$\sqrt{S} = 33 \text{ TeV}$				
$\lambda/\lambda_{\rm SM}$	NLO [fb]	NLO + NNLL [fb]	K-factor		
-1	$725.6^{+109.8+45.5(+19.4)}_{-89.7-41.7(-17.4)}$	$881.4_{-16.5-52.4(-21.3)}^{+54.2+55.4(+30.8)}$	1.21		
-0.8	$655.3^{+99.1+41.0(+17.4)}_{-81.1-37.6(-15.8)}$	$796.0^{+48.9+50.0(+27.8)}_{-14.9-47.3(-19.3)}$	1.21		
-0.6	$589.0_{-72.9-33.7(-14.1)}^{+89.1+36.9(+15.7)}$	$715.6^{+43.9+44.9(+24.9)}_{-13.4-42.5(-17.3)}$	1.21		
-0.4	$526.9^{+79.8+32.9(+14.0)}_{-65.2-30.1(-12.6)}$	$640.2^{+39.2+40.2(+22.3)}_{-12.0-38.0(-15.5)}$	1.22		
-0.2	$468.8^{+71.0+29.3(+12.5)}_{-58.1-26.8(-11.2)}$	$569.7_{-10.6-33.8(-13.8)}^{+34.9+35.8(+19.8)}$	1.22		
0	$414.9_{-51.5-23.6(-9.9)}^{+62.9+25.9(+11.0)}$	$504.3^{+30.8+31.6(+17.5)}_{-9.4-30.0(-12.2)}$	1.22		
0.2	$365.2_{-45.4-20.8(-8.7)}^{+55.4+22.7(+9.7)}$	$443.8^{+27.1+27.9(+15.4)}_{-8.3-26.3(-10.8)}$	1.22		
0.4	$319.5_{-39.8-18.1(-7.6)}^{+48.5+19.8(+8.5)}$	$388.4^{+23.7+24.4(+13.4)}_{-7.2-23.0(-9.4)}$	1.22		
0.6	$277.9^{+42.2+17.2}_{-34}$ (+7.4)	$337.9^{+20.5+21.2(+11.6)}_{-6.3-20.0(-8.2)}$	1.22		
0.8	$240.5_{-30.0-13.5(-5.7)}^{+36.5+14.9(+6.4)}$	$292.4^{+17.7+18.3(+10.1)}_{-5.4-17.3(-7.1)}$	1.22		
1	$207.2^{+31.5+12.8(+5.5)}_{-25.9-11.6(-4.9)}$	$252.0^{+15.2+15.8(+8.6)}_{-4.7-14.9(-6.1)}$	1.22		
1.2	$178.0^{+27.1+11.0(+4.7)}_{-22.3-10.0(-4.2)}$	$216.5^{+13.1+13.6(+7.4)}_{-4.0-12.8(-5.3)}$	1.22		
1.4	$152.9^{+23.3+9.4(+4.0)}_{-19.2-8.5(-3.6)}$	$186.0^{+11.2+11.7(+6.3)}_{-3.4-11.0(-4.6)}$	1.22		
1.6	$131.9^{+20.1+8.1(+3.5)}_{-16.6-7.3(-3.1)}$	$160.5^{+9.6+10.1(+5.5)}_{-3.0-9.5(-3.9)}$	1.21		
1.8	$115.0^{+17.6+7.1(+3.0)}_{-14.5-6.4(-2.7)}$	$139.9^{+8.4+8.8(+4.8)}_{-2.6-8.3(-3.4)}$	1.22		
2	$102.3^{+15.7+6.3(+2.7)}_{-12.9-5.7(-2.4)}$	$124.4^{+7.4+7.8(+4.2)}_{-2.3-7.4(-3.1)}$	1.22		

$$292.4_{-5.4-17.3(-7.1)}^{+17.7+18.3(+10)}_{-5.4-17.3(-7.1)}_{-7.1}$$

$$252.0_{-4.7-14.9(-6.1)}^{+15.2+15.8(+8)}_{-6.1}$$

$$240.5_{-30.0-13.5(-5.7)}^{+36.5+14.9(+6.4)}$$

$$207.2_{-25.9-11.6(-4.9)}^{+31.5+12.8(+5.5)}$$

0.8

1

gg>HH@NLO

 $\sigma_{\rm NLO}(pp \to HH + X) = \sigma_{\rm LO} + \Delta\sigma_{\rm virt} + \Delta\sigma_{gg} + \Delta\sigma_{gq} + \Delta\sigma_{q\bar{q}},$

gg>HH@NLO: Full mt dependence

	PDF4LHC15	MMHT2014
σ_{LO}	19.80 fb	23.75 fb
σ_{NLO}^{HTL}	38.66 fb	39.34 fb
σ_{NLO}	32.78(7) fb	33.33(7) fb

-15%

$$\sigma(gg \to HH) = 32.78(7)^{+13.5\%}_{-12.5\%}$$
 (PDF4LHC15)

Borowka, Greiner, Heinrich, et al, Phys.Rev.Lett.117,012001(2016), Baglio, Campanario,Spira, et al, 1811.05692

Frontiers: NNNLO

Many checks:

- 1. Self consistency (gauge invariance, poles cancellation, RG equations)
- 2. Reproduce single Higgs xs up to NNLO
- 3. Reproduce double Higgs xs up to NNLO

Class-(a)

$$\frac{d\sigma_{hh}^{a}}{dm_{hh}} = f_{h \to hh} \left(\frac{C_{hh}}{C_{h}} - \frac{6\lambda_{hhh}v^{2}}{m_{hh}^{2} - m_{h}^{2}} \right)^{2} \times \left(\sigma_{h} \big|_{m_{h} \to m_{hh}} \right)$$

$$f_{h \to hh} = \frac{\sqrt{m_{hh}^{2} - 4m_{h}^{2}}}{16\pi^{2}v^{2}}$$
Dulat, Lazopoulos, Mistlberger iHixs, 1802.00827

Class-(b)

$$\begin{aligned} d\sigma_{hh}^{b} &= d\sigma_{hh}^{b} \Big|_{p_{T}^{hh} < p_{T}^{\text{veto}}} + d\sigma_{hh}^{b} \Big|_{p_{T}^{hh} > p_{T}^{\text{veto}}} \\ & \uparrow \end{aligned}$$
$$\begin{aligned} \frac{d\sigma_{hh}^{b}}{dp_{T}^{hh}} &= H^{b} \otimes B_{g} \otimes B_{g} \otimes S \times \left(1 + \mathcal{O}\left(\frac{\left(p_{T}^{hh}\right)^{2}}{Q^{2}}\right)\right) \end{aligned}$$

The idea of qT subtraction

The idea of qT subtraction

Validation of qT subtraction

Validation of qT subtraction

How large are NNNLO corrections?

order \sqrt{s}	$13 { m TeV}$	$14 { m TeV}$	$27 { m TeV}$	$100 { m TeV}$
LO	$13.80^{+31\%}_{-22\%}$	$17.06^{+31\%}_{-22\%}$	$98.22^{+26\%}_{-19\%}$	$2015^{+19\%}_{-15\%}$
NLO	$25.81^{+18\%}_{-15\%}$	$31.89^{+18\%}_{-15\%}$	$183.0^{+16\%}_{-14\%}$	$3724^{+13\%}_{-11\%}$
NNLO	$30.41^{+5.3\%}_{-7.8\%}$	$37.55^{+5.2\%}_{-7.6\%}$	$214.2^{+4.8\%}_{-6.7\%}$	$4322_{-5.3\%}^{+4.2\%}$
$N^{3}LO$	$31.31^{+0.66\%}_{-2.8\%}$	$38.65^{+0.65\%}_{-2.7\%}$	$220.2^{+0.53\%}_{-2.4\%}$	$4438^{+0.51\%}_{-1.8\%}$

87% 18% 3%

Scale uncer. less than PDF uncer. 3.3% now !

Invariant mass of Higgs pair

$$d\sigma^{\mathbf{N}^{k}\mathbf{LO}\oplus\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m}_{t}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} + \Delta\sigma_{m_{t}\to\infty}^{k,l}$$

$$d\sigma^{\mathbf{N}^{k}\mathbf{LO}_{\mathbf{B}-\mathbf{i}}\oplus\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m}_{t}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} + \Delta\sigma_{m_{t}\to\infty}^{k,l} \frac{d\sigma_{m_{t}}^{\mathbf{LO}}}{d\sigma_{m_{t}\to\infty}^{\mathbf{LO}}}$$

$$d\sigma^{\mathbf{N}^{k}\mathbf{LO}\otimes\mathbf{N}^{l}\mathbf{LO}_{\mathbf{m}_{t}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} \frac{d\sigma_{m_{t}\to\infty}^{\mathbf{N}^{k}\mathbf{LO}}}{d\sigma_{m_{t}\to\infty}^{\mathbf{N}^{l}\mathbf{LO}}} = d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}} + \Delta\sigma_{m_{t}\to\infty}^{k,l} \frac{d\sigma_{m_{t}}^{\mathbf{N}^{l}\mathbf{LO}}}{d\sigma_{m_{t}\to\infty}^{\mathbf{N}^{l}\mathbf{LO}}}$$

$gg \rightarrow HH@NNLO$

