



#### Indirect search for New Physics at LHCb

#### 何吉波 (Jibo HE)

第十五届TeV物理工作组学术研讨会 2021年7月19-21日

#### Outline

- Introduction
- Flavour anomalies

$$-B \rightarrow \mu^+ \mu^-, b \rightarrow s \ell^+ \ell^-$$
  
- R(D\*)

• CP violation

– 
$$\phi_s$$
, CKM-γ, charm  $\Delta A_{CP}$ 

Summary

\*sorry if I miss your favourite, more can be found in LHCb public page: https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary\_all.html

#### Beauty/charm production

- Large production cross-section @ 7 TeV
  - Minibias ~60 mb
  - Charm ~6 mb
  - Beauty  $\sim 0.3 \text{ mb c.f. 1nb} @Y(4S)$

Flavor factory!

Predominantly in forward/backward cones





- Compared to minimum bias (background)
  - Relatively high mass  $\rightarrow$  high *transverse momentum*
  - Relatively long lifetime  $\rightarrow$  large impact parameter (IP)
- Requires excellent vertexing, tracking, particleidentification

#### The LHCb experiment



## The LHCb trigger (2018)



• LO, Hardware

- $-p_{\rm T}(\mu_1) \times p_{\rm T}(\mu_2) > (1.5 \text{ GeV})^2$
- $-p_{\rm T}(\mu) > 1.8 \,{\rm GeV}$
- $-E_{\rm T}(e) > 2.4 \, {\rm GeV}$
- $-E_{\rm T}(\gamma) > 3.0 {
  m GeV}$
- $-E_{\rm T}(h) > 3.7 \, {\rm GeV}$
- High Level Trigger
  - Stage1,  $p_{\rm T}$ , IP
  - Stage2, full selection

#### LHCb luminosity prospects



|                    | LHC era            | HL-LHC era           |                       |                          |
|--------------------|--------------------|----------------------|-----------------------|--------------------------|
| Run 1<br>(2010-12) | Run 2<br>(2015-18) | Run 3<br>(2022-24)   | Run 4<br>(2027-30)    | Run 5+<br>(2031+)        |
| 3 fb <sup>-1</sup> | <b>6</b> fb⁻¹      | 23 fb <sup>-1</sup>  | 46 fb <sup>-1</sup>   | >300 fb <sup>-1</sup> ?? |
|                    |                    | Phase-1<br>Upgrade!! | Phase-1b<br>Upgrade!? | Phase-2<br>Upgrade??     |

#### Indirect search for New Physics

- Precision measurement of heavy hadron decays
  - Flavour-Changing NC
  - Flavour-Changing CC
- Probe New Physics at high energy scale





#### Indirect search for NP (cont.)

• Overconstrain the CKM triangle





# $B^0_{(s)} \rightarrow \mu^+ \mu^-$ , recent results

- $B_s^0 \rightarrow \mu^+ \mu^-$  observed in single experiment(s) LHCb (4.6 fb<sup>-1</sup>): 7.8 $\sigma$ , ATLAS (26 fb<sup>-1</sup>): 4.6 $\sigma$ , CMS (61 fb<sup>-1</sup>): 5.6 $\sigma$
- Still compatible with SM, start to be interesting



# $B_{\rm s}^0 \to \mu^+ \mu^-$ effective lifetime

•  $B_{\rm s}^0$  mixing  $\Rightarrow$  effective  $\tau$ 

$$\tau_{\mu^{+}\mu^{-}} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left[ \frac{1 + 2A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s} + y_{s}^{2}}{1 + A_{\Delta\Gamma}^{\mu^{+}\mu^{-}}y_{s}} \right]$$
$$A_{\Delta\Gamma}^{\mu^{+}\mu^{-}} \equiv \frac{R_{H}^{\mu^{+}\mu^{-}} - R_{L}^{\mu^{+}\mu^{-}}}{R_{H}^{\mu^{+}\mu^{-}} + R_{L}^{\mu^{+}\mu^{-}}} \quad A_{\Delta\Gamma} = 1 \text{ in SM}$$
$$y_{s} = \frac{\Delta\Gamma_{s}}{2\Gamma_{s}}$$

[PRL 118 (2017) 191801] First measurement, not yet sensitive to  $A_{\Lambda\Gamma}$  $\tau(B_s^0 \to \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$ 

 $1.70^{+0.61}_{-0.44}$  ps [CMS-PAS-BPH-16-004]



[De Bruyn et al., PRL 109 (2012) 041801]



12



 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ 

Rates and angular distributions sensitive to NP



#### Branching fraction of $b \rightarrow s \mu^+ \mu^-$

• Pattern of tensions seen, theo. uncertainty?



• 
$$P'_5$$
 with  $B^0 \to K^{*0} \mu^+ \mu^-$   
•  $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$ , less form-factor dependent  
[S. Descotes-Genon, *et al.*, JHEP 01 (2013) 048]

• Also measured by Belle, ATLAS, CMS



## $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ , latest results

 $A_{\rm FB}$ 

0.5

▲Run 1 ▼2016

• Combined

• Updated with 2016 data



 $P'_{5,2}$  with  $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ 

- All data,  $K^{*+} \rightarrow K_S^0 \pi^+$
- Local deviation from SM,  $3\sigma \text{ in } P_2' = \frac{2}{3}A_{\text{FB}}/(1-F_L)$





#### Lepton flavour universality

• In SM, three lepton families  $(e, \mu, \tau)$  have identical couplings to the gauge bosons



Lepton flavor universality violation? New Physics!

#### Experimental test of LFU

• Well established in SM, e.g.  $W \rightarrow \ell v$ 

- Some tension at LEP,

#### addressed by ATLAS/CMS

[arXiv:2007.14040, CMS PAS SMP-18-011]





W Leptonic Branching Ratios

#### LFU in B system, pre-LHCb

• R(D<sup>(\*)</sup>), Babar reported deviation of ~3.2  $\sigma$ 



• No deviation seen in FCNC  $b \rightarrow s\ell^+\ell^-$  decays

### R(D<sup>\*</sup>) using munoic τ decays

- $\mathcal{B}(\tau \rightarrow \mu X)^{\sim} 17.4\%$
- 3D fits, R(D\*)=0.336 ± 0.027 ± 0.030
   Signal yields: 16 500 ± 1 670



 $X_{\bar{h}}$ 

 $\overline{B}^0$ 

ΡV

### R(D<sup>\*</sup>) using 3-prong τ decays

- $\mathcal{B}(\tau \to 3\pi^{\pm}X)^{\sim}9\% + 4\%(\geq 1\pi^{0})$
- Normalized to  $B^0 \rightarrow D^{*-}3\pi$

 $R_{had}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)} \qquad R(D^*) = R_{had}(D^*) \times \frac{\mathcal{B}(B^0 \to D^{*-} \pi^+ \pi^- \pi^+)}{\mathcal{B}(B^0 \to D^{*-} \mu^- \nu_{\mu})}$ 



3D fits, R(D\*)=0.286 ± 0.019 ± 0.025 ± 0.021
 – Signal yields: 1273 ± 85



#### Summary of LFU in $b \rightarrow c \ell \nu$ decays

• Deviations from SM seen by Babar/Belle/LHCb



#### Bremsstrahlung corrections



#### R(K), introduction

• Double ratio to control systematics



#### Signal yields with all data

• 9 fb<sup>-1</sup> of data,  $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$   $-N(B^+ \to K^+ e^+ e^-) = 1640 \pm 70$  $-N(B^+ \to K^+ \mu^+ \mu^-) = 3850 \pm 70$ 



#### R(K), latest results

- Devivation from SM,  $3.1\sigma$  by LHCb
- Electron mode more close to SM prediction?



#### R(K<sup>\*0</sup>), results with Run-I data

• Deviations from SM seen by LHCb ( $\sim 2.4\sigma$ )



#### R(pK), results with Run-I+2016 Compatible with 1, difficult to predict R(pK)? $R_{pK}$ LHCb Combinatorial $\rightarrow K^+ K^- \mu^+ \mu^-$ 1.2 $\rightarrow \overline{K}^{*0} \mu^+ \mu^-$ Candidates per 1. 09 00 00 09 00 1.0 $444 \pm 23$ 0.8 40 LHCb 0.6 20 2 6 0 5.4 5.6 5.8 $a^2 \left[ \text{GeV}^2 / c^4 \right]$ $m(pK^{-}\mu^{+}\mu^{-})$ [GeV/c<sup>2</sup>] Weighted candidates 50 Candidates per 50 MeV/ $c^2$ 45 LHCb LHCb Combinatorial 40 $\rightarrow pK^{-}\pi^{0}e^{+}e^{-}$ 35 $pK^{-}J/\psi$ $\rightarrow K^+K^-e^+e^-$ 30 30 $\rightarrow \overline{K}^{*0}e^+e^-$ 25 20 $122 \pm 17^{-1}$ 20 15 10 10 0 1500 2000 2500

0

5

5.5

6

 $m(pK^{-}e^{+}e^{-})$  [GeV/ $c^{2}$ ]

 $m(pK^{-})$  [MeV/c<sup>2</sup>]

#### Mixing induced CPV



#### Latest results on $\phi_s$

https://hflav-eos.web.cern.ch/hflav-eos/osc/PDG\_2021/



## $B_s^0$ mixing parameter $\Delta m_s$



$$\Delta m_q = \frac{G_f^2}{6\pi^2} m_{B_q} M_W^2 f(\frac{m_t^2}{M_W^2}) \eta_{QCD} B_{B_q} f_{B_q}^2 |V_{tb}^* V_{tq}|^2 \qquad q = d, s$$

$$\frac{\Delta m_d}{\Delta m_s} = \frac{|V_{td}^2|}{|V_{ts}^2|} \frac{m_{B_d}}{m_{B_s}} \frac{f_{B_d}^2 B_{B_d}}{f_{B_s}^2 B_{B_s}} = \frac{|V_{td}^2|}{|V_{ts}^2|} \frac{m_{B_d}}{m_{B_s}} \xi^{-2}$$

where  $\xi = 1.200^{+0.0054}_{-0.0060}$  [L. Di Luzio *et al.*, JHEP 12 (2019) 009]

#### $\Delta m_s$ , latest results from LHCb

•  $\Delta m_s = 17.7683 \pm 0.0051 \pm 0.0032 \text{ ps}^{-1}$ , consistent with SM prediction  $18.4^{+0.7}_{-1.2} \text{ ps}^{-1}$ 

[arXiv:2104.04421] Decavs / (0.04 ps)



# CKM-γ Least well-measured angle



- Interference between
   b → u and b → c
   transitions
- CP observables  $\Rightarrow \gamma$



#### CKM- $\gamma$ , LHCb combination

- Most precise determination,  $\gamma = (67 \pm 4)^{\circ}$ , c.f., indirect determination:  $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$
- Combined analysis with BES-III will help



#### $\Delta A_{CP}$ in charm [PRL 122 (2019) 211803] $A_{CP}(f) = \frac{\Gamma(M \to f) - \Gamma(\overline{M} \to \overline{f})}{\Gamma(M \to f) + \Gamma(\overline{M} \to \overline{f})}$ $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$ $\times 10^3$ 2200×10<sup>3</sup> Candidates / (0.1 MeV/c<sup>2</sup>) 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 0000 0000 LHCb WeV/c<sub>2</sub> 1800 1600 LHCb 44M 13M Data Data $D^0 \rightarrow K^- K^+$ $D^0 \rightarrow \pi^- \pi^+$ (0.1 1400 1200 Comb. bkg Comb. bkg. 1000 Candidates / 800 $\pi$ -tagged 600E $\Delta A_{CP}^{\pi\text{-tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4},$ 400 200 2005 2005 2010 2015 2020 2010 2015 202 $\Delta A_{CP}^{\mu\text{-tagged}} = \left[-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})\right] \times 10^{-4}.$ $m(D^0\pi^+)$ [MeV/c<sup>2</sup>] $m(D^0\pi^+)$ [MeV/c<sup>2</sup>] $160 \frac{\times 10^3}{10}$ $\times 10^3$ Candidates / (1 MeV/c<sup>2</sup>) Candidates / ( $1 \text{ MeV}/c^2$ ) LHCb 600F LHCb Combined one: 140 9M 3M 500 + Data Data 120 $D^0 \rightarrow K^- K^+$ $D^0 \rightarrow \pi^- \pi^+$ $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$ 400E 100 $D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow K^- \pi^+$



#### Prospects

• LHCb upgrades (2025: 23 fb<sup>-1</sup>, Upgrade-II: 300 fb<sup>-1</sup>)

| Observable                                                                                   | Current LHCb                       | LHCb 2025                    | Belle II                                   | Upgrade II                   | ATLAS & CMS       |  |  |
|----------------------------------------------------------------------------------------------|------------------------------------|------------------------------|--------------------------------------------|------------------------------|-------------------|--|--|
| EW Penguins                                                                                  |                                    |                              |                                            |                              |                   |  |  |
| $\overline{R_K \ (1 < q^2 < 6} \mathrm{GeV}^2 c^4)$                                          | 0.1 [274]                          | 0.025                        | 0.036                                      | 0.007                        | -                 |  |  |
| $R_{K^*} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$                                                 | 0.1 [275]                          | 0.031                        | 0.032                                      | 0.008                        |                   |  |  |
| $R_{\phi},R_{pK},R_{\pi}$                                                                    |                                    | 0.08,0.06,0.18               | -                                          | 0.02,0.02,0.05               | -                 |  |  |
| CKM tests                                                                                    |                                    |                              |                                            |                              |                   |  |  |
| $\gamma$ , with $B_s^0 \to D_s^+ K^-$                                                        | $\binom{+17}{-22}^{\circ}$ [136]   | 4°                           | _                                          | 1°                           |                   |  |  |
| $\gamma$ , all modes                                                                         | $\binom{+5.0}{-5.8}^{\circ}$ [167] | $1.5^{\circ}$                | $1.5^{\circ}$                              | $0.35^{\circ}$               | _                 |  |  |
| $\sin 2\beta$ , with $B^0 \to J/\psi K_s^0$                                                  | 0.04 606                           | 0.011                        | 0.005                                      | 0.003                        | _                 |  |  |
| $\phi_s$ , with $B_s^0 \to J/\psi\phi$                                                       | 49  mrad [44]                      | $14 \mathrm{mrad}$           | _                                          | 4 mrad                       | 22 mrad [607]     |  |  |
| $\phi_s$ , with $B_s^0 \to D_s^+ D_s^-$                                                      | 170 mrad [49]                      | 35  mrad                     | _                                          | 9 mrad                       |                   |  |  |
| $\phi_s^{s\bar{s}s}$ , with $B_s^0 \to \phi\phi$                                             | 154 mrad [94]                      | 39 mrad                      |                                            | 11 mrad                      | Under study [608] |  |  |
| $a_{ m sl}^s$                                                                                | $33 	imes 10^{-4}$ [211]           | $10 	imes 10^{-4}$           | -                                          | $3	imes 10^{-4}$             |                   |  |  |
| $ V_{ub} / V_{cb} $                                                                          | 6% [201]                           | 3%                           | 1%                                         | 1%                           | -                 |  |  |
| $B^0_s, B^0 { ightarrow} \mu^+ \mu^-$                                                        |                                    |                              |                                            |                              |                   |  |  |
| $\frac{\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}}{\mathcal{B}(B^0_\circ \to \mu^+ \mu^-)}$ | 90% [264]                          | 34%                          | _                                          | 10%                          | 21% [609]         |  |  |
| $T_{B0} \rightarrow u + u -$                                                                 | 22% 264                            | 8%                           | _                                          | 2%                           | _                 |  |  |
| $S_{s} \rightarrow \mu + \mu$                                                                |                                    | -                            | _                                          | 0.2                          | _                 |  |  |
| $h \rightarrow a = \overline{u}$ IIIV studies                                                |                                    |                              |                                            |                              |                   |  |  |
| $\frac{0 \rightarrow c c}{P(D^*)}$                                                           | 0.096 915 917                      | 0.0079                       | 0.005                                      | 0.009                        |                   |  |  |
| R(D)<br>P(L/a/a)                                                                             | 0.020 [215, 217]                   | 0.0072                       | 0.005                                      | 0.002                        | _                 |  |  |
| $R(J/\psi)$                                                                                  | 0.24 [220]                         | 0.071                        | _                                          | 0.02                         | _                 |  |  |
| Charm                                                                                        |                                    |                              |                                            | -                            |                   |  |  |
| $\Delta A_{C\!P}(KK-\pi\pi)$                                                                 | $8.5 \times 10^{-4}$ [610]         | $1.7 \times 10^{-4}$         | $5.4 \times 10^{-4}$                       | $3.0 	imes 10^{-5}$          | —                 |  |  |
| $A_{\Gamma} (\approx x \sin \phi)$                                                           | $2.8 \times 10^{-4}$ [240]         | $4.3 \times 10^{-5}$         | $3.5 	imes 10^{-4}$                        | $1.0 \times 10^{-5}$         |                   |  |  |
| $x\sin\phi$ from $D^0 \to K^+\pi^-$                                                          | $13 \times 10^{-4}$ [228]          | $3.2 \times 10^{-4}$         | $4.6 	imes 10^{-4}$                        | $8.0 \times 10^{-5}$         | -                 |  |  |
| $x \sin \phi$ from multibody decays                                                          |                                    | $(K3\pi) 4.0 \times 10^{-5}$ | $(K_{\rm S}^0\pi\pi) \ 1.2 \times 10^{-4}$ | $(K3\pi) 8.0 \times 10^{-6}$ | -                 |  |  |

#### Summary

- Some anomalies seen at LHCb
  - $$\begin{split} &-b \to s\ell^+\ell^-, \, \mathrm{d}\mathcal{B}/\mathrm{d}q^2, \, P_5' \text{ in } B \to K^*\mu^+\mu^-, \, \mathcal{R}_{K^{(*0)}} \\ &-b \to c\ell^- \bar{\nu}_\ell, \, \mathcal{R}_{D^*} \end{split}$$

to be confirmed or refuted with more data

• Continuous efforts on CPV

 $-\phi_s$ ,  $\Delta m_s$ , CKM- $\gamma$ , charm  $\Delta A_{CP}$ 

• Your suggestions are always appreciated!



lepton flavour universality tests



#### Science China Physics, Mechanics & Astronomy

- Editor's Focus: aim at PRL quality, fast channel
  - Full-text HTML and timely publication (online immediately)
  - Highlighted at EurekAlert and other public media



Scan the QR code 😪 Get the news



Scientia Sinica Physica, Mechanica & Astronomica

- Since 1950, in Chinese
- Indexed in Scopus, ESCI, etc.
- Special topic is encouraged, published over 70 special topics

国家自然科学基金委员



Sponsored by

中國科学院

Published by







phys.scichina.com