Status from the LDT simulation

Ryuta

Updates

- Number of hit layers
- Fitting function

Number of hit layers and injection angle

- $R=1.8 \mathrm{~m}$
$\cdot \cos (\theta)=0.0,0.6,0.65$, $0.70,0.72,0.74, \ldots 0.96$
- Forward detector configuration is that of Feb. version.

Number of hit layers and injection angle

Total number of hits

Number of hits except DCH

Number of hits and injection momentum

not so much difference...

$P=3 G e V$

$P=100 \mathrm{GeV}$

$\sigma(1 / p t)$ with fitting

formula :
$\sigma_{1 / P_{T}}=a \oplus \frac{b}{P_{T} \sin ^{1 / 2} \theta}=a \oplus \frac{b}{P \sin ^{3 / 2} \theta}$

A fitting function $\rightarrow \sqrt{a^{2}+\frac{1}{P^{2}} \cdot \frac{b^{2}}{\sin ^{3} \theta}}$
($\theta=90$ degree, therefore, $\sin =1$)

-- "a" $\sim 2 \times 10^{-5}$ is what we expect from $R=1.8 \mathrm{~m}$
-- Discrepancy between data points \& fitting line. Partially, the configuration is not the one assumed in the formula. Is that also related to reconstruction?

Ref: Fit to data points with equal spacing SITs

a bit discrepancy ...

Next

- Confirmation of the reconstruction routine in the LDT
- Necessary updates, confirmation for workshop if needed.

Momentum resolution with different tracker radius

Continue from last Monday. Change the radius of tracker

	Tracker $\mathbf{R}_{\max }$	DCH
Black	1800 mm	$300-1800 \mathrm{~mm}$
Red	1700	$300-1700$
Breen	1600	$300-1600$
Blue	1500	$300-1500$

Mom. res. Ratio to $\mathrm{R}=1.8 \mathrm{~m}$

$$
\begin{aligned}
& \left.\frac{\Delta p_{T}}{p_{T}}\right|_{\text {res. }} \approx \frac{12 \sigma_{r \phi} p_{T}}{0.3 B L^{2}} \sqrt{\frac{5}{N+5}} \propto 1 / L^{2} \\
& \\
& \mathrm{R}=1.7 \mathrm{~m} \\
& \mathrm{R}=1.6 \mathrm{~m} \\
& \mathrm{R}=1.5 \mathrm{~m}
\end{aligned} \quad(1.8 \mathrm{~m} / 1.7 \mathrm{~m})^{2}=1.12 \mathrm{(1.8m/1.6m)}^{2}=1.27 \mathrm{~m}^{2}=1.44
$$

Fitting

$$
\frac{\sigma P_{T}}{P_{T}} \sim a \cdot P_{T} \oplus \frac{b}{\sin ^{1 / 2} \theta}
$$

	"a"	"b"
1.8 m	$2.25 \mathrm{E}-05$	$3.47 \mathrm{E}-04$
1.7 m	$2.57 \mathrm{E}-05$	$3.68 \mathrm{E}-04$
1.6 m	$2.86 \mathrm{E}-05$	$4.41 \mathrm{E}-04$
1.5 m	$3.31 \mathrm{E}-05$	$4.94 \mathrm{E}-04$
$\mathrm{a} \propto 1 / \mathrm{L}^{2}, \mathrm{~b} \propto 1 / \mathrm{L} ?$		

remove points of lower mom.?

$\mathbf{P}(\mu)[\mathbf{G e V} / \mathrm{c}]$

$\sigma(1 / \mathrm{Pt}) ?$

- Except the fitting issues, the results should be the same, but worth to see $d(1 / p t)=d p t / p t / p t ~ a s ~$ well?
- formula?
- at any rate, the "a" term in previous page is the one for $d(1 / p t)$ formula.

The track momentum resolution can be parametrized in terms of the resolution on $1 / p_{T}$ as

$$
\begin{equation*}
\sigma_{1 / p_{\mathrm{T}}}=a \oplus \frac{b}{p \sin ^{3 / 2} \theta} \quad\left[\mathrm{GeV}^{-1}\right] \tag{4.2}
\end{equation*}
$$

where $p\left(p_{T}\right)$ is the (transverse) momentum of the track and θ is the polar angle. The constant term a represents the intrinsic resolution of the tracker and the term with b parametrizes the multiple-scattering effect. The CEPC physics program requires

$$
\begin{equation*}
a \sim 2 \times 10^{-5} \mathrm{GeV}^{-1} \quad \text { and } \quad b \sim 1 \times 10^{-3} \tag{4.3}
\end{equation*}
$$

At $\theta=90^{\circ}$, the resolution is dominated by the multiple-scattering effect for tracks with momenta below 50 GeV and by the single-point resolution for tracks with momenta above 50 GeV .

Comments

- Number of hits VS particle injection angle -- under preparation
-- for the forward tracker part (if $\cos (\theta)>0.8$ case), would temporally assume the one I have shown in last Month
- Radiation length for different gas-mixture
(0) $60 \% \mathrm{He}, 40 \% \mathrm{C} 3 \mathrm{H} 8: \quad 0.6 /\left(5.671 \times 10^{\wedge} 5\right)+0.4 /\left(2.429 \times 10^{\wedge} 4\right)=0.00001753 \quad(\mathrm{X} / \mathrm{X0} / \mathrm{cm})$
(1) $50 \% \mathrm{He}, 50 \% \mathrm{C} 4 \mathrm{H} 10: 0.5 /\left(5.671 \times 10^{\wedge} 5\right)+0.5 /\left(1.817 \times 10^{\wedge} 4\right)=0.000028399$
(2) $70 \% \mathrm{He}, 30 \% \mathrm{C} 4 \mathrm{H} 10: 0.7 /\left(5.671 \times 10^{\wedge} 5\right)+0.3 /\left(1.817 \times 10^{\wedge} 4\right)=0.000017745$
... for the moment, pending
(3) $90 \% \mathrm{He}, 10 \% \mathrm{C} 4 \mathrm{H} 10: 0.9 /\left(5.671 \times 10^{\wedge} 5\right)+0.1 /\left(1.817 \times 10^{\wedge} 4\right)=0.0000070905$
\#\#\# Radiation length of each gas is taken from pdg.

$$
\begin{aligned}
& \frac{\sigma P_{T}}{P_{T}} \sim a \cdot P_{T} \oplus \frac{b}{\sin ^{1 / 2} \theta} \Longrightarrow \sqrt{\left(a \cdot P_{T}\right)^{2}+\left(\frac{b}{\sin ^{1 / 2} \theta}\right)^{2}} \\
& \sigma_{1 / P_{T}}=a \oplus \frac{b}{P_{T} \sin ^{1 / 2} \theta}=a \oplus \frac{b}{P \sin ^{3 / 2} \theta} \rightarrow \sqrt{a^{2}+\frac{1}{P^{2}} \cdot \frac{b^{2}}{\sin ^{3} \theta}}
\end{aligned}
$$

