Status from the LDT simulation

Ryuta

03/29/2021

<u>Updates</u>

- Number of hit layers
- Fitting function

Number of hit layers and injection angle

- \cdot R=1.8m
- $\cdot \cos(\theta) = 0.0, 0.6, 0.65, 0.70, 0.72, 0.74, \dots 0.96$

Forward detector
configuration is that of
Feb. version.

Number of hit layers and injection angle

P=100GeV

looks that Nhit>100 is achieved till $\cos(\theta) \sim 0.85$

4

Number of hits

Number of hits and injection momentum

P=3GeV

Number of hits

/

5

$\sigma(1/pt)$ with fitting

-- "a" ~ 2 \times 10⁻⁵ is what we expect from R=1.8m

-- Discrepancy between data points & fitting line. Partially, the configuration is not the one assumed in the formula. Is that also related to reconstruction ?

Ref: Fit to data points with equal spacing SITs

a bit discrepancy . . .

- Confirmation of the reconstruction routine in the LDT
- Necessary updates, confirmation for workshop if needed.

Momentum resolution with different tracker radius

Continue from last Monday. Change the radius of tracker

	Tracker R _{max}	DCH
Black	1800 mm	300-1800mm
Red	1700	300-1700
Breen	1600	300-1600
Blue	1500	300-1500

R=1800mm configuration but without material.

Intrinsic momentum resolution is dominant at higher momentum range.

10

Mom. res. Ratio to R=1.8m

$$\frac{\Delta p_T}{p_T}|_{res.} \approx \frac{12\sigma_{r\phi} p_T}{0.3 BL^2} \sqrt{\frac{5}{N+5}} \propto 1/2$$

R=1.7m	$(1.8m/1.7m)^2 = 1.12$
R=1.6m	$(1.8m/1.6m)^2 = 1.27$
R=1.5m	$(1.8m/1.5m)^2 = 1.44$

<u>σ(1/Pt) ?</u>

• Except the fitting issues, the results should be the same, but worth to see d(1/pt) = dpt/pt/pt as well ?

• formula ?

• at any rate, the "a" term in previous page is the one for d(1/pt) formula. The track momentum resolution can be parametrized in terms of the resolution on $1/p_T$ as

$$\sigma_{1/p_{\rm T}} = a \oplus \frac{b}{p \sin^{3/2} \theta} \quad [\,\mathrm{GeV}^{-1}] \tag{4.2}$$

where $p(p_T)$ is the (transverse) momentum of the track and θ is the polar angle. The constant term *a* represents the intrinsic resolution of the tracker and the term with *b* parametrizes the multiple-scattering effect. The CEPC physics program requires

$$a \sim 2 \times 10^{-5} \,\mathrm{GeV}^{-1}$$
 and $b \sim 1 \times 10^{-3}$. (4.3)

At $\theta = 90^{\circ}$, the resolution is dominated by the multiple-scattering effect for tracks with momenta below 50 GeV and by the single-point resolution for tracks with momenta above 50 GeV.

from CEPC CDR

Comments

• Number of hits VS particle injection angle -- under preparation

-- for the forward tracker part (if $\cos(\theta) > 0.8$ case), would temporally assume the one I have shown in last Month

Radiation length for different gas-mixture

(0) 60% He, 40% C3H8 : $0.6/(5.671 \times 10^{5}) + 0.4/(2.429 \times 10^{4}) = 0.00001753$ (X/X0/cm)

(1) 50% He, 50% C4H10: $0.5/(5.671 \times 10^{5}) + 0.5/(1.817 \times 10^{4}) = 0.000028399$

(2) 70% He, 30% C4H10 : $0.7/(5.671 \times 10^{5}) + 0.3/(1.817 \times 10^{4}) = 0.000017745$

(3) 90% He, 10% C4H10: $0.9/(5.671 \times 10^{5}) + 0.1/(1.817 \times 10^{4}) = 0.0000070905$

Radiation length of each gas is taken from pdg.

... for the moment, pending

$$\frac{\sigma P_T}{P_T} \sim a \cdot P_T \oplus \frac{b}{\sin^{1/2} \theta} \implies \sqrt{\left(a \cdot P_T\right)^2 + \left(\frac{b}{\sin^{1/2} \theta}\right)^2}$$

$$\sigma_{1/P_T} = a \oplus \frac{b}{P_T \sin^{1/2} \theta} = a \oplus \frac{b}{P \sin^{3/2} \theta} \to \sqrt{a^2 + \frac{1}{P^2} \cdot \frac{b^2}{\sin^3 \theta}}$$