

Introduction to the extended Higgs sector: 2HDM

南开大学,陈宁

2021.08.27 @南京大学(online)

Purpose

- To introduce some theoretical backgrounds and phenomenological implications on the extended Higgs sector beyond the SM, such as the 2HDM.
- To focus on the 2HDM, which is (i) mostly studied due to many wellmotivated theoretical framework and pheno implications, (ii) more accessible at the ongoing/upcoming collider searches.
- Mainly focus on the LHC direct searches: the current constraints from the 125 GeV Higgs measurement, and the direct searches for heavy Higgs bosons at the leading order.
- Other extensions such as singlets/triplets are possible, since they can form gauge-invariant operators with the SM Higgs doublet, e.g. $|\Phi|^2 |S|^2$, $|\Phi|^2 \text{Tr}(\Sigma^2)$.

Background

- The minimal SM Higgs sector: one complex Higgs doublet Φ , LHC measurement of $M_h = 125$ GeV [2012].
- Let us consider some BIG picture beyond the SM, the unification of three fundamental interactions? In the framework of GUT(+SUSY), three gauge couplings unify at ~ 10^{16} GeV.

Background

- In the GUTs, the EW sector usually contains two Higgs doublets.
- For the Georgi-Glashow SU(5), one usually considers the SUSY extension. The GUT-scale Higgs sector must contain super-fields of $\mathbf{5}_{\mathbf{H}}$ and $\mathbf{\bar{5}}_{\mathbf{H}}$ to be anomaly-free. The scalar components give the $(H_u)_{Y=+1}$ and $(H_d)_{Y=-1}$ fields at the EW scale.
- $(H_u)_{Y=+1}$ couples to the up-quarks, and $(H_d)_{Y=-1}$ couples to the down-quarks/charged leptons, this is known as the Type-II 2HDM.
- Beyond the SU(5): SU(6), two Higgs doublets come from ${\bf \bar 6}_H$ and ${\bf 15}_H,$ also a Type-II 2HDM (2106.00223)

Background

- The first 2HDM proposal was by T. D. Lee (non-SUSY), to seek for the CP-violating sources beyond the CKM matrix in the quark sector.
- One can always allow a relative phase between two Higgs doublets, i.e., $\langle \Phi_1 \rangle \sim \frac{v_1}{\sqrt{2}}$, $\langle \Phi_2 \rangle \sim e^{i\xi} \frac{v_2}{\sqrt{2}}$
- The whole lecture will not cover the CPV 2HDM. Its mixing pattern is more complicated, and also involves EDM experiment.
- All current studies of the 2HDM from the pheno motives are viewed as the effective approach at the EW scale, $\sim \mathcal{O}(100)\,\mathrm{GeV}.$

References

- The book: The Higgs Hunter's Guide, [Gunion, Haber, Kane, Dawson]
- MSSM Higgs and collider pheno: hep-ph/0503172 (SM Higgs), 0503173 [Djouadi]
- A quite ``recent" review: 1106.0034
- Collider pheno of the general 2HDM: 1305.2424, 1504.04630
- CPV aspects of the 2HDM, and the EDM probes: 1403.4257 [Inoue, Ramsey-Musolf, Zhang]

The 2HDM (CP-conserving)

The general 2HDM

- I use the SM fermion irreps of (with $Q_e = T^3 + Y/2$) $Q_L = (\mathbf{3}, \mathbf{2}, +\frac{1}{3}) u_R = (\mathbf{3}, \mathbf{1}, +\frac{4}{3}) d_R = (\mathbf{3}, \mathbf{1}, -\frac{2}{3})$ $L_L = (\mathbf{1}, \mathbf{2}, -1) \ell_R = (\mathbf{1}, \mathbf{1}, -2)$
- The most general 2HDM contains two complex Higgs doublets of Φ_1 and Φ_2 , both under the irrep of $\mathbf{2}_{+1}$ of the $\mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y$.
- Φ_1 and Φ_2 have 8 real scalar d.o.fs. By Nambu-Goldstone theorem: # Physical Higgs bosons = # real scalar d.o.fs - # NGB = 4*2 - 3 = 5, we expect 5 Higgs bosons rather than one.
- The renormalizable Lagrangian: $\mathscr{L} = \mathscr{L}_{kin} + \mathscr{L}_{Yukawa} V(\Phi_1, \Phi_2)$
- The kinematic term is simple: $\mathscr{L}_{kin} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2$ where $D_{\mu}\Phi_j = (\partial_{\mu} - igW^i_{\mu}\sigma^i/2 - ig'B_{\mu}/2)\Phi_j$

 The most general 2HDM potential determined by gaugeinvariance and renormalizability :

$$\begin{split} V(\Phi_1, \Phi_2) &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + H.c.) \\ &\frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &\left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) (\Phi_1^{\dagger} \Phi_2) + H.c. \right] \\ \text{This is called the generic basis, a more useful one is called the physical basis.} \end{split}$$

• In the CPV case, m_{12}^2 , $\lambda_{5,6,7}$ are complex. In the CPC case, all parameters are real. We consider the soft-breaking \mathbb{Z}_2 symmetry, which sets $\lambda_{6,7} = 0$.

Expressed in components:
$$\Phi_j = \left(\pi_j^+, \frac{1}{\sqrt{2}}(v_j + h_j + i\pi_j^0)\right)^T j = 1, 2$$

- To count the d.o.f.: four charged complex scalars of (π₁[±], π₂[±]), two neutral real scalars of (h₁, h₂), and two neutral pseudo-real scalars of (π₁⁰, π₂⁰). These states are called the *gauge eigenstates*. We shall obtain the *mass eigenstates* from the 2HDM potential.
- The NGBs correspond to longitudinal components of (W^{\pm}, Z^0) , coming from two states from the $(\pi_1^{\pm}, \pi_2^{\pm})$ and one state from the (π_1^0, π_2^0) . One is left with two charged Higgs bosons of H^{\pm} , one pseudo-real (CP-odd) Higgs boson of A, and two real (CP-even) Higgs bosons of (h, H).

• To obtain the Higgs spectrum, one first minimizes the 2HDM potential in the <u>unitary gauge</u>, i.e., $\langle \Phi_j \rangle = \frac{1}{\sqrt{2}} \left(0, v_j \right)^T$,

$$\begin{aligned} \frac{\partial V}{\partial v_j} &= 0 \Rightarrow \\ m_{11}^2 &= m_{12}^2 \tan \beta - \frac{1}{2} \left(\lambda_1 v_1^2 + \lambda_{3+4+5} v_2^2 \right) \\ m_{22}^2 &= m_{12}^2 / \tan \beta - \frac{1}{2} \left(\lambda_2 v_2^2 + \lambda_{3+4+5} v_1^2 \right) \end{aligned}$$

to replace them into the Higgs potential.

• Two Higgs VEVs: $v_1^2 + v_2^2 = v^2 = (\sqrt{2}G_F)^{-1}$, $\tan\beta = v_2/v_1$

• The charged Higgs bosons

$$-\mathcal{L}_{\pi_i^{\pm}} = \left[m_{12}^2 - \frac{1}{2}\lambda_{4+5}v^2\sin\beta\cos\beta\right](\pi_1^-, \pi_2^-) \left(\begin{array}{cc}\tan\beta & -1\\ -1 & 1/\tan\beta\end{array}\right) \left(\begin{array}{c}\pi_1^+\\\pi_2^+\end{array}\right).$$

$$\Rightarrow M_{\pm}^2 = \frac{m_{12}^2}{\sin\beta\cos\beta} - \frac{1}{2}\lambda_{4+5}v^2$$

• The CP-odd Higgs bosons

$$-\mathcal{L}_{\pi_i^0} = \frac{1}{2} \left(m_{12}^2 - \lambda_5 v^2 \sin\beta \cos\beta \right) \cdot (\pi_1^0, \pi_2^0) \left(\begin{array}{cc} \tan\beta & -1 \\ -1 & 1/\tan\beta \end{array} \right) \left(\begin{array}{c} \pi_1^0 \\ \pi_2^0 \end{array} \right) \,,$$

$$\Rightarrow M_A^2 = \frac{m_{12}^2}{\sin\beta\cos\beta} - \lambda_5 v^2$$

• The zero-mass states correspond to the NGBs.

• The CP-even Higgs bosons

$$-\mathcal{L}_{h_i} = (h_1, h_2) \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 \\ \mathcal{M}_{21}^2 & \mathcal{M}_{22}^2 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix},$$

$$\mathcal{M}^2 = M_A^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix} + v^2 \begin{pmatrix} \lambda_1 c_\beta^2 + \lambda_5 s_\beta^2 & \lambda_{3+4} s_\beta c_\beta \\ \lambda_{3+4} s_\beta c_\beta & \lambda_2 s_\beta^2 + \lambda_5 c_\beta^2 \end{pmatrix},$$

• The mass matrix does not have zero eigenvalue in general and will be diagonalized by a orthogonal transformation:

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \cdot \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \qquad \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \cdot \begin{pmatrix} H \\ h \end{pmatrix}.$$

 $\pmb{\alpha}$ is called the mixing angle between two CP-even Higgs bosons of $(h\,,H)$

- The parameters of λ_i in the 2HDM potential cannot be directly determined, one can measure Higgs boson masses and mixings through experiments.
- The transformation between the *generic basis* and the *physical basis* is useful [to check it yourself]:

$$\begin{split} \lambda_1 &= \frac{M_h^2 s_\alpha^2 + M_H^2 c_\alpha^2 - m_{12}^2 t_\beta}{v^2 c_\beta^2} \,, \\ \lambda_2 &= \frac{M_h^2 c_\alpha^2 + M_H^2 s_\alpha^2 - m_{12}^2 / t_\beta}{v^2 s_\beta^2} \,, \\ \lambda_3 &= \frac{1}{v^2} \Big[\frac{(M_H^2 - M_h^2) s_\alpha c_\alpha}{s_\beta c_\beta} + 2M_{\pm}^2 - \frac{m_{12}^2}{s_\beta c_\beta} \Big] \,, \\ \lambda_4 &= \frac{1}{v^2} (M_A^2 - 2M_{\pm}^2 + \frac{m_{12}^2}{s_\beta c_\beta}) \,, \\ \lambda_5 &= \frac{1}{v^2} (\frac{m_{12}^2}{s_\beta c_\beta} - M_A^2) \,. \end{split}$$

- A little summary: the 2HDM parameters in the physical basis include masses of $(M_h, M_H, M_A, M_{\pm}, m_{12}^2)$, and two angles of $(\alpha, \tan \beta)$.
- To probe the Higgs self-couplings in the 2HDM: to transform λ_i into the quantities in the *physical basis*, such as λ_{hhh} , λ_{hhH} , and etc. In the CP-conserving 2HDM, there cannot be CP-violating terms like λ_{hhA} .

Example:

$$\begin{split} \lambda_{hhh} &= \frac{M_h^2}{2\nu} \Big[s_{\beta-\alpha} + 2c_{\beta-\alpha}^2 (s_{\beta-\alpha} + \frac{c_{\beta-\alpha}}{t_{2\beta}}) \Big] - \frac{m_{12}^2}{s_\beta c_\beta \nu} c_{\beta-\alpha}^2 (s_{\beta-\alpha} + \frac{c_{\beta-\alpha}}{t_{2\beta}}) \\ \Rightarrow \lambda_{hhh}^{\rm SM} &= \frac{M_h^2}{2\nu} \quad \text{under the alignment limit of } c_{\beta-\alpha} \to 0 \\ \lambda_{hhH} &= \frac{c_{\beta-\alpha}}{\nu} \Big[(M_H^2 + 2M_h^2)(-1 + 2c_{\beta-\alpha}^2 - \frac{s_{2(\beta-\alpha)}}{t_{2\beta}}) + \frac{2m_{12}^2}{s_\beta c_\beta} (2 + \frac{3s_{2(\beta-\alpha)}}{2t_{2\beta}} - 3c_{\beta-\alpha}^2) \Big] \\ \Rightarrow \lambda_{hhH} \to 0 \end{split}$$

The MSSM 2HDM

- The MSSM 2HDM potential contains three different contributions:

 (1) The D-term from the SUSY kinematic terms
 (2) The F-term of μH_uH_d from the super potential, this leads to a SUSY μ-problem
 (3) soft SUSY-breaking terms
- The full MSSM Higgs potential reads $V = (|\mu|^{2} + m_{1}^{2}) |H_{u}|^{2} + (|\mu|^{2} + m_{2}^{2}) |H_{d}|^{2} - B\mu\epsilon_{\alpha\beta}(H_{u}^{\alpha}H_{d}^{\beta} + H.c.)$ $+ \frac{g^{2} + g^{'2}}{8} (|H_{u}|^{2} - |H_{d}|^{2})^{2} + \frac{g^{'2}}{2} |H_{u}^{\dagger}H_{d}|^{2}$

To make it simple:
$$\lambda_1 = \lambda_2 = -\lambda_3 = \frac{1}{4}(g^2 + g^{'2})$$
 $\lambda_4 = \frac{1}{2}g^{'2}$

The MSSM Higgs masses (tree-level): $M_A^2 = B\mu$, $M_{\pm}^2 = M_A^2 + m_W^2$,

$$M_{h,H}^2 = \frac{1}{2} \left[M_A^2 + m_Z^2 \mp \left((M_A^2 + m_Z^2)^2 - 4M_A^2 m_Z^2 \cos^2 2\beta \right)^{1/2} \right]$$

A general pattern is: $M_{\!A} \sim M_{\pm} \sim M_{H}$

The Higgs-gauge

• Let us get back to the Higgs-gauge interactions in the *physical basis*, which can be decomposed as:

 $\mathcal{L}_{kin} = \mathcal{L}_{free} + \mathcal{L}_{\phi VV} + \mathcal{L}_{\phi \phi VV} + \mathcal{L}_{\phi \phi V}$

• The most important terms:

$$\begin{aligned} \mathscr{L}_{\phi VV} &= \Big(\frac{2m_W^2}{\nu} W^{+\mu} W_{\mu}^{-} + \frac{m_Z^2}{\nu} Z^{\mu} Z_{\mu} \Big) (s_{\beta-\alpha} h + c_{\beta-\alpha} H) \\ \text{We can parametrize } \xi_h^V &= s_{\beta-\alpha} \text{ and } \xi_H^V = c_{\beta-\alpha}. \\ c_{\beta-\alpha} &= \cos(\beta - \alpha) \text{ is a very useful parametrization, } c_{\beta-\alpha} \to 0 \text{ with the global fit, and this is called the alignment limit. \end{aligned}$$

 In the most pheno studies, one assumes M_h = 125 GeV, and other states of (H, A, H[±]) to be heavy.

Under this limit, only the h is responsible for the EWSB, and the H does not quite couple to gauge bosons. Phenomenologically, the H mostly couples to the fermions but not bosons.

The Higgs-gauge

• Some other Higgs-gauge couplings:

$$\begin{split} G(AhZ^{\mu}) &= \frac{g}{2c_W} c_{\beta-\alpha} (p_A + p_h)^{\mu} \\ G(AHZ^{\mu}) &= -\frac{g}{2c_W} s_{\beta-\alpha} (p_A + p_H)^{\mu} : A \to hZ/HZ \text{ decays} \\ G(hhW^+_{\mu}W^-_{\nu}) &= G(HHW^+_{\mu}W^-_{\nu}) = \frac{i}{2}g^2\eta_{\mu\nu} \\ G(hhZ_{\mu}Z_{\nu}) &= G(HHZ_{\mu}Z_{\nu}) = \frac{i}{2}(g^2 + g^{'2})\eta_{\mu\nu} : \text{ neutral Higgs} \\ \text{pair productions at lepton colliders} \\ G(Z_{\mu}H^+H^-) &= -\frac{g}{2c_W}c_{2W}(p^+ + p^-)_{\mu} \end{split}$$

 $G(A_{\mu}H^{+}H^{-})=-\,ie(p^{+}+p^{-})_{\mu}~$: charged Higgs pair productions

- The most general 2HDM Yukawa can be:
 $$\begin{split} &-\mathscr{L}_{Y}=Y_{ij}^{d1}\bar{Q}_{iL}d_{jR}\Phi_{1}+Y_{ij}^{d2}\bar{Q}_{iL}d_{jR}\Phi_{2}\\ &+Y_{ij}^{\ell^{1}}\bar{L}_{iL}\ell_{jR}\Phi_{1}+Y_{ij}^{\ell^{2}}\bar{L}_{iL}\ell_{jR}\Phi_{2}+Y_{ij}^{u1}\bar{Q}_{iL}u_{jR}\tilde{\Phi}_{1}+Y_{ij}^{u2}\bar{Q}_{iL}u_{jR}\tilde{\Phi}_{2}+H.c.\\ &\text{Here, }\tilde{\Phi}_{i}\equiv i\Phi_{i}^{*}\sigma_{2}\text{, with }Y=-1. \end{split}$$
- This is problematic, since there can be tree-level flavor-changing neutral currents (FCNC).
- This is to be avoided by assigning all right-handed fermions of a given charge to one particular Higgs doublet, by Paschos-Glashow-Weinberg.

• There are usually four types of Yukawa assignments in the general 2HDM:

	u_R	d_R	ℓ_R
Type-I	Φ_2	Φ_2	Φ_2
Type-II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2
I npped	±2	тI	T 7

- Most of the general 2HDM discussions focus on the Type-I and Type-II.
- For the MSSM, two Higgs doublets of $(H_u)_{Y=+1}$ and $(H_d)_{Y=-1}$ with opposite hyper charges to cancel the $[SU(2)_L]^2U(1)_Y$ anomaly. It is thus a Type-II 2HDM.

Express the Yukawa couplings in terms of the mass eigenstates:

$$\begin{split} &-\mathscr{L}_{Y} = \sum_{f} \frac{m_{f}}{v} \Big(\xi_{h}^{f} \bar{f} fh + \xi_{H}^{f} \bar{f} fH - i\xi_{A}^{f} \bar{f} \gamma_{5} fA \Big) \\ &+ \sqrt{2} \Big[V_{ud} \Big(\frac{m_{u}}{v} \xi_{A}^{u} \bar{u} P_{L} d + \frac{m_{d}}{v} \xi_{A}^{d} \bar{u} P_{R} d \Big) + \frac{m_{\ell}}{v} \xi_{A}^{\ell} \bar{\nu}_{\ell} P_{R} \ell \Big] H^{+} + H.c. \end{split}$$

• $\xi_h^f, \xi_H^f, \xi_A^f$ are Yukawa couplings normalized to the SM Higgs Yukawa couplings.

	Type-I	Type-II	LS	Flipped
ξ_h^u	$s_{\beta-lpha} + rac{c_{\beta-lpha}}{t_{eta}}$	$s_{\beta-lpha} + rac{c_{\beta-lpha}}{t_{eta}}$	$s_{\beta-lpha} + rac{c_{\beta-lpha}}{t_{eta}}$	$s_{\beta-lpha} + rac{c_{\beta-lpha}}{t_{eta}}$
ξ_h^d	$s_{\beta-lpha}+rac{c_{eta-lpha}}{t_{eta}}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$	$s_{eta-lpha}+rac{c_{eta-lpha}}{t_eta}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$
ξ_h^ℓ	$s_{eta-lpha}+rac{c_{eta-lpha}}{t_eta}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$	$s_{\beta-lpha} + rac{c_{\beta-lpha}}{t_{eta}}$
ξ_H^u	$c_{\beta-\alpha} - \frac{s_{\beta-\alpha}}{t_{\beta}}$	$c_{\beta-lpha} - rac{s_{\beta-lpha}}{t_{eta}}$	$c_{\beta-lpha} - rac{s_{\beta-lpha}}{t_{eta}}$	$c_{eta-lpha} - rac{s_{eta-lpha}}{t_{eta}}$
ξ^d_H	$c_{\beta-\alpha} - \frac{s_{\beta-\alpha}}{t_{\beta}}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$	$c_{\beta-lpha} - rac{s_{eta-lpha}}{t_{eta}}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$
ξ^ℓ_H	$c_{\beta-lpha} - rac{s_{\beta-lpha}}{t_{eta}}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$	$c_{eta-lpha}-rac{s_{eta-lpha}}{t_{eta}}$
ξ^u_A	$\frac{1}{t_{eta}}$	$\frac{1}{t_{eta}}$	$\frac{1}{t_{eta}}$	$\frac{1}{t_{eta}}$
ξ^d_A	$-\frac{1}{t_{\beta}}$	t_eta	$-\frac{1}{t_{\beta}}$	t_eta
ξ^ℓ_A	$-\frac{1}{t_{eta}}$	t_eta	t_{eta}	$-\frac{1}{t_{eta}}$

Exercise: write down these couplings under

the alignment limit of $c_{\beta-\alpha}=0$

Some theoretical constraints

- Before we consider any pheno implications, there are several theoretical constraints to the 2HDM.
- Generally, the self-couplings in the 2HDM potential cannot be arbitrarily too large and/or too negative.
- These are nothing new, but something already existing for the SM Higgs $V(\Phi) = \mu^2 |\Phi|^2 + \lambda |\Phi|^4$.
- Higgs potential bounded from below (BFB), the Higgs potential cannot become negative: $\lambda > 0$

- Lee-Quigg-Thacker unitarity bound (1977): use the Goldstone equivalence theorem to constrain the NGB scattering processes.
- The joint neutral scalar scattering processes forming a 4×4 matrix for the amplitudes. $(W_L^+ W_L^-, \frac{1}{\sqrt{2}} Z_L Z_L, \frac{1}{\sqrt{2}} hh, Z_L h)$

•
$$\left| \operatorname{Re}(a_l) \right| \le \frac{1}{2} \Rightarrow |\lambda| \le 2\pi \Rightarrow m_h^{\mathrm{SM}} \le 870 \,\mathrm{GeV}$$

• In the 2HDM: the BFB requires no direction can lead to V < 0. [hep-ph/ 0207010]

 $\lambda_{1,2} > 0, \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$

• Unitarity bound [hep-ph/0508020, 1509.06060] : $(W_j^+W_j^-, \frac{1}{\sqrt{2}}Z_jZ_j, \frac{1}{\sqrt{2}}h_jh_j, Z_jh_j, W_1^{\pm}W_2^{\mp}, Z_1Z_2, h_1h_2, h_{1,2}Z_{2,1})$

$$a_0^0 = \frac{1}{16\pi} \begin{pmatrix} X_{4\times4} & 0 & 0 & 0 \\ 0 & Y_{4\times4} & 0 & 0 \\ 0 & 0 & Z_{3\times3} & 0 \\ 0 & 0 & 0 & Z_{3\times3} \end{pmatrix}, \qquad X_{4\times4} = \begin{pmatrix} 3\lambda_1 & 2\lambda_3 + \lambda_4 & 3\sqrt{2}\lambda_6^R & 3\sqrt{2}\lambda_6^I \\ 2\lambda_3 + \lambda_4 & 3\lambda_2 & 3\sqrt{2}\lambda_7^R & 3\sqrt{2}\lambda_7^I \\ 3\sqrt{2}\lambda_6^R & 3\sqrt{2}\lambda_7^R & \lambda_3 + 2\lambda_4 + 3\lambda_5^R & 3\lambda_5^I \\ 3\sqrt{2}\lambda_6^I & 3\sqrt{2}\lambda_6^I & 3\sqrt{2}\lambda_7^I & 3\lambda_5^I & \lambda_3 + 2\lambda_4 - 3\lambda_5^R \end{pmatrix},$$

• The EW precision measurements (Peskin-Takeuchi S, T, U oblique parameters), which are one-loop corrections to the W^+W^- , ZZ propagators.

	Current (1.7 >	$< 10^7 Z$	Z's)	CEPC $(10^{10}Z's)$			FCC-ee $(7 \times 10^{11} Z's)$			ILC $(10^9 Z's)$					
	σ		correla	tion	σ	correlation		σ	correlation		σ		correlation			
	0	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S		U	(10^{-2})	S	T	U
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879
T	0.09 ± 0.14	-	1	-0.87	2.55	_	1	-0.735	0.53	-	1	-0.097	4.89	_	1	-0.909
U	-0.02 ± 0.11	_	_	1	2.08	_	_	1	2.40	_	_	1	3.76	_	_	1

measure of the custodial symmetry: $\rho \simeq 1 + \alpha \Delta T$

 The full analysis of the S, T, U parameter in the 2HDM: H.J.He, Polonsky, S. Su (hep-ph/0102144)

The pheno of 2HDM

- So far, the LHC only finds one SM-like Higgs boson of $M_h = 125 \, {\rm GeV}$, no other (heavier) Higgs bosons in the spectrum were found yet.
- Meanwhile, we can learn something from the LHC measurements of the 125 GeV Higgs boson already. This is usually performed through a global fit of $\chi^2 \equiv \sum_{i} \frac{(\mu_i^{2\text{HDM}} - \mu_i^{\text{obs}})^2}{\sigma_i^2}$ $\mu_i^{2\text{HDM}} = (\sigma \times \text{Br})^{2\text{HDM}} / (\sigma \times \text{Br})^{\text{SM}} \text{ for specific signal channels}$

• μ_i^{obs} and σ_i come from the experiments, a summary from the Run-I data is here (Gu, Li, Liu, Su, Su, 1709.06103):

Channel	Production	Run-I	Channel	Production	Run-I
$\gamma\gamma$	ggh	$1.10\substack{+0.23\\-0.22}$	$\tau^+\tau^-$	ggh	$1.0\substack{+0.6 \\ -0.6}$
	VBF	$1.3^{+0.5}_{-0.5}$		VBF	$1.3\substack{+0.4\\-0.4}$
	Wh	$0.5^{+1.3}_{-1.2}$		Wh	$-1.4^{+1.4}_{-1.4}$
	Zh	$0.5\substack{+3.0 \\ -2.5}$		Zh	$2.2^{+2.2}_{-1.8}$
	$t ar{t} h$	$2.2^{+1.6}_{-1.3}$		$t ar{t} h$	$-1.9\substack{+3.7 \\ -3.3}$
WW^*	ggh	$0.84\substack{+0.17 \\ -0.17}$	$bar{b}$	Wh	$1.0\substack{+0.5 \\ -0.5}$
	VBF	$1.2^{+0.4}_{-0.4}$		Zh	$0.4\substack{+0.4\\-0.4}$
	Wh	$1.6^{+1.2}_{-1.0}$		$t ar{t} h$	$1.15\substack{+0.99 \\ -0.94}$
	Zh	$5.9^{+2.6}_{-2.2}$	ZZ^*	ggh	$1.13\substack{+0.34 \\ -0.31}$
	$t ar{t} h$	$5.0^{+1.8}_{-1.7}$		VBF	$0.1\substack{+1.1\\-0.6}$

- How to make the fit in practice? In principle, they involve productions and decay branching ratios with the 2HDM couplings.
- Productions: four channels of ggh, VBF, Vh, and $t\bar{t}h$. $\frac{\sigma_{2\text{HDM}}(gg \to h)}{\sigma_{\text{SM}}(gg \to h)} = \frac{\sigma_{2\text{HDM}}(t\bar{t}h)}{\sigma_{\text{SM}}(t\bar{t}h)} = (\xi_h^u)^2$ $\frac{\sigma_{2\text{HDM}}(\text{VBF})}{\sigma_{\text{SM}}(\text{VBF})} = \frac{\sigma_{2\text{HDM}}(Vh)}{\sigma_{\text{SM}}(Vh)} = (\xi_h^V)^2$
- Decays: the best tool is the 2HDMC (<u>https://</u> <u>2hdmc.hepforge.org/</u>). [to give a demo here]

• 1709.06103

- The alignment limits of $c_{\beta-\alpha} \rightarrow 0$ are shown for all four types of 2HDM. More constrained regions are expected from the Run-II and the future e^+e^- colliders.
- The large-tan β regions are highly constrained in the Type-II, LS, Flipped.
- There are also the "wrong-sign" bends in the Type-II, LS, Flipped, where ξ_h^d and/or $\xi_h^\ell \to -1$.

The LHC searches

- Next: What do these constraints mean to the future searches to the heavy states in the 2HDM?
- The neutral Higgs bosons (H, A) are mostly produced via the ggF, plus the $t\bar{t}$ -associated productions.
- The neutral Higgs bosons (H, A) can mostly decay into fermions, rather than the vector bosons. The loop-induced final states of $(gg, \gamma\gamma, \gamma Z)$ are suppressed.
- Several exotic decays: $A \rightarrow hZ, HZ, H^{\pm}W^{\mp}$, either suppressed by alignment limit or phase space.

The LHC searches

 Possible search channels for neutral Higgs bosons under the alignment limit:

A decays	Final states	Alignment limit
CM formions	$A \to (\tau^+ \tau^-, \mu^+ \mu^-)$	\checkmark
SM lermons	$A ightarrow (t ar{t} , b ar{b})$	\checkmark
	$A \rightarrow hZ$	_
Exotics	$A \rightarrow HZ$	\checkmark
	$A \to H^\pm W^\mp$	\checkmark
Loops	$A ightarrow (gg, \gamma\gamma, \gamma Z)$	\checkmark

H decays	Final states	Alignment limit
SM formiona	$H \to (\tau^+ \tau^-, \mu^+ \mu^-)$	\checkmark
Sivi termions	$H ightarrow (t ar{t}, b ar{b})$	\checkmark
gauge bosons	H ightarrow (WW, ZZ)	_
Exotics	$H \to AZ$	\checkmark
	$H \to H^\pm W^\mp$	\checkmark
	H ightarrow hh	_
	$H \to AA$	_
	$H \to H^+ H^-$	\checkmark
Loops	$H ightarrow (gg,\gamma\gamma,\gamma Z)$	\checkmark

NC, Jinmian Li, Yandong Liu, 1509.03848

The A/H decays

• This is usually the leading decay modes with $\tan \beta = 1$

Left: Type-I, Right: Type-II

The A/H decays

• $A/H \rightarrow \tau \tau$ dependences on $\tan \beta$ (Type-II)

BR(H $\rightarrow \tau \tau$)

1502.05653

The LHC searches

• In the Type-II: $g_{H^{\pm}\bar{t}b} \sim m_b t_\beta (1+\gamma_5) + m_t (1-\gamma_5)/t_\beta$

• The charged Higgs bosons H^{\pm} are mostly produced via threebody productions of $pp \rightarrow tbH^{\pm}$, and decays into tb. Both the low- t_{β} and high- t_{β} regions are sensitive.

The $A/H/H^{\pm}$ searches

• The $\tau\tau$ searches covers the large-tan β regions (Type-II)

The A/H decays

• $A/H \rightarrow t\bar{t}$ dependences on $\tan\beta$ (Type-II)

1502.05653

• $A/H \rightarrow t\bar{t}$ is particularly challenging, due to the strong interference effects:

hep-ph/9404359

• Master equation for signals:

$$\hat{\sigma}_{sig}(\hat{s}) = \int dPS \left(|\mathscr{A}_{res} + \mathscr{A}_{bkg}|^2 - |\mathscr{A}_{bkg}|^2 \right)$$
$$= \hat{\sigma}_{res.}(\hat{s}) + \hat{\sigma}_{int.}(\hat{s})$$

• CP-even and CP-odd cases (Dicus, Willenbrock 1994)

$$\hat{\sigma}_{\text{res.}}^{\text{even}}(\hat{s}) \propto \frac{\alpha_s^2 \hat{s}^2}{v^2} \beta^3 \left| \frac{(\xi_H^t)^2 I_{1/2}(\hat{s}/4m_t^2)}{\hat{s} - M_H^2 + iM_H \Gamma_H} \right|^2$$
$$\hat{\sigma}_{\text{int.}}^{\text{even}}(\hat{s}) \propto -\frac{\alpha_s^2}{64\pi} \beta^2 \text{Re} \left[\frac{(\xi_H^t)^2 I_{1/2}(\hat{s}/4m_t^2)}{\hat{s} - M_H^2 + iM_H \Gamma_H} \right]$$

• The line shapes with/w.o. the interferences

Carena, Z.Liu, 1608.07282

	$\Delta m_{t\bar{t}}$	Efficiency	Systematic Uncertainty
Scenario A	15%	8%	4% at 30 fb ⁻¹ , halved at 3 ab^{-1}
Scenario B	8%	5%	4% at 30 fb ⁻¹ , scaled with \sqrt{L}

Carena, Z.Liu, 1608.07282

Summary

- I also hope this gives the audiences some brief ideas on what can be expected from the 2HDM. I restrict myself from too many technical details.
- Some of the ongoing research topics: the UV origins of the 2HDM (from GUT), the CPV 2HDM (both EDM probes and the collider signatures), and the related topics of the EW phase transitions.