$e^+e^- \rightarrow Zh \rightarrow \nu\bar{\nu} + SS1 + SS2 \rightarrow \nu\bar{\nu}q\bar{q}q\bar{q}$

with Lepton Colliders

Yulei Zhang^[1], Xiang Chen^[1], Jifeng Hu^[2], Liang Li^[1]
1 Shanghai Jiao Tong University
2 South China Normal University

Long-Lived Particle

Outline

Beyond the Standard Model

- Why LLPs interesting
- Search for LLPs at future collider
 - Machine Learning
 - Cut-Based Analysis
- Preliminary results
- Summary

The lifetime frontier ...

- Large majority of current collider experiment searches and analysis strategies assume the new particle decays promptly.
- Particle lifetimes span a very wide range and long lifetimes can generically appear in the BSM theories.
- Dedicated searches for long-lived BSM particles are necessary.

Sixth workshop of the LHC LLP Community

What is a long-lived particle?

Sixth workshop of the LHC LLP Community

Object (neutral or charged) decaying a macroscopic and reconstructible distance from IP Signal signature of a long-lived particle:

Neutral LLP decays are a spectacular signature, and the **burst of energy** appearing out of nowhere sets it apart from the collision point.

Phys. Rev. Lett. **122**, 131801 – 2019.04.03

LLP Searches at Lepton Colliders

- Energy: 240 GeV
- Mass of SS1: 0.1-50 GeV
- Mass of SS2: 0.1-50 GeV
- SS1, SS2's lifetime $\tau = R_{out}/c = 6m/c = 20 ns$

Basic Setup

- Muon Detector
 - $R_{\rm in} \approx 4m$
 - $R_{\text{out}} \approx 6m$
- $\Delta t = t_{\rm Hit} r_{\rm Hit}/c$
- Dominant Background
 - $e^+e^- \rightarrow ZH$
 - $e^+e^- \rightarrow qq$
- Full simulation with CEPC official software

Signal range: LLPs decay within 0~6 meters

ML based Analysis

Deep Residual Network, ResNet

- Firstly, appeared in the ILSVRC 2015 classification challenges (ImageNet Large Scale Visual Recognition Challenge)
- ResNet18, ResNet50, ResNet101...

Configuration

- Mapping the raw detector information to a 2D image
- Input Format: image with resolution of $(R, \phi) = 200 \times 200$ and 1 to 3 channel(s)
 - $R_i = i \times \Delta R_i$, R starts from 0 m to 8 m.
 - ϕ starts from $-\pi$ to π
 - Energy is the sum of both Tracker hits and Calorimeter hits.
 - Time is the maximum ΔT (E > 0.1 GeV) within (R, ϕ) pixel
- Model: ResNet18 (Classification), ResNet50 (Vertex Finding)
- Binary Cross Entropy Loss: $loss(x_i, y_i) = -\omega_i [y_i \log(x_i) + (1 y_i) \log(1 x_i)]$

Long-Lived Particle

Preselection

	Signal	ZH	eeqq
Raw Entries	0.5×10^{6}	0.93×10^{6}	0.99×10^{7}
$50 < m_{qq} < 180 \ \&\& 35 < m_{\rm recoil} < 175 \ \&\& 0.25 \leq y_{12} \leq 0.72$	3.8×10^{5}	182,844	848,529
Efficiency	72.41%	19.66%	8.57%

ResNet18 (2 channel: $E, \Delta T$)

	$n_1 = 1 \& n_2 = 1$	ε	Weight
Signal	377742	99.99%	×1
ZH	0	0.00%	×1
qq	0	0.00%	×25

12

ML-based and Cut-based comparison $(Z \rightarrow \overline{\nu}\nu)$

	Signal: $Z o \overline{\nu} \nu$	$e^+e^- ightarrow q\overline{q}$	$e^+e^- \rightarrow Zh$	Total
# of Events in 5.6 ab^{-1}		2.5×10^{8}	1.0×10^{6}	2.01×10 ⁸
# of Events simulated	$\sim 1.0 \times 10^{6}$	$(\sim 0.99 \times 10^7)^*$	$\sim 1.37 \times 10^{6}$	$\sim 2.87 \times 10^{6}$
${ m E_{missing}} > 190~GeV$ && $n_{rec} < 8$	88,077	290	3,361	3,651
<i>ML score</i> > 0.95	87,050	0	0	0
Efficiency (ML-based)	98.83 %	_	_	_
$E_{2j} \ge 30 \text{ GeV}$ $\&\&$ $\min(\Delta T_{j_1}, \Delta T_{j_2}) > 3 \text{ ns}$	66,325	0	0	0
Efficiency (Cut-based)	73.89 %			

* Due to the limited computing power, $\sim 10^7$ events were simulated so far

Expected Limits

	Signal	Total Background	Expected Limits		
$e^+e^- ightarrow Zh ightarrow (Z: \overline{q}q) \overline{q}q \overline{\nu} u$	373308	0.02 (CR)	2.4×10^{-5}		
$e^+e^- ightarrow Zh ightarrow (Z; \overline{ u} u) \overline{q} q \overline{ u} u$	87,050	0.02 (CR)	9.8×10^{-5}		
Combined limit: 1.9×10 ⁻⁵					

- Limits are the minimal branching ratio of Higgs decaying to LLPs (the smaller the better).
- Cosmic Ray(CR) veto efficiency is calculated by the filter that the time difference of two clusters on the outermost cell must be less than 2.4 meters. (signal inefficiency~ 2.1%)
- Signal Yield: $n_s = \mathcal{L} \times \sigma(e^+e^- \to Zh) \times \sigma(Z \to qq, \bar{\nu}\nu) \times \epsilon_{sig} \times \epsilon_{CR}$

Sensitivity

- Best branching ratio exclusion limit at decay length around a few meters: $BR(h \rightarrow XX) > \sim 10^{-5}$ for most LLP masses
- Good sensitivity for low LLP mass (as low as 0.1 GeV)

Preliminary Study: Vertex Finding With ML

60 -

0

10

20

mooth L1 Loss:
$$loss(x, y) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0.5 \times (y_i - f(x_i))^2, & \text{if } |y_i - f(x_i)| < 1 \\ |y_i - f(x_i)| - 0.5, & \text{otherwise} \end{cases}$$

30

40

50

60

2021/8/30

S

Preliminary Study: Vertex Finding Results

- $\Delta R = R_{pred} R_{truth}$ $\Delta \phi = \phi_{pred} \phi_{truth}$
- pixel size: 7.1cm
- Initial result looks very promising

Summary

- Long-Lived Particle $(h \rightarrow q \bar{q} \nu \bar{\nu})$ study done with future lepton collider
 - current results based on CEPC_v4 geometry setup
- For background-free channel (both for ML-based and cut-based), $ZH \rightarrow \overline{\nu}\nu + SS_1 + SS_2$, ML can increase signal efficiency from 73.9% to 98.8%.
- Working on exploring other possibilities with ML: e.g., vertex finding
- First attempt to apply AI image recognition techniques to raw detector hits
 - Very good sensitivity reached (~ 10⁻⁵) with (expected) 10⁶ Higgs statistics compared to current LHC limits (~ 10⁻⁴).

Thanks