

Precise Higgs measurements at the LHC

Nan Lu

California Institute of Technology

Higgs potential and BSM opportunity Workshop

August 28, 2021

The Standard Model Higgs Boson

- Quarks, charged leptons, W/Z bosons acquire mass through the Brout-Englert-Higgs (BEH) mechanism in the Standard Model
- Higgs boson physics is one of the most important goals of LHC physics program and the next generation collider experiments

ATLAS Recent Higgs Results

CMS Recent Higgs Results

Standard Model Higgs production at LHC

Higgs boson decays

- "Big five": үү, ZZ, WW, тт, bb
 - $\gamma\gamma$ and ZZ \rightarrow 4I: high resolution and S/B: precise mass and differential measurement
 - WW: high BR, low S/B, low resolution due to neutrinos
 - тт, bb: high BR, low S/B, directly probe Higgs couplings to fermions
- Rare decay channels to be observed: μμ, Zγ, cc, ...

$H \rightarrow ff \qquad b, \tau^-, \mu^- \qquad H \rightarrow VV \qquad W^*/Z^*$	Decay channel	SM BR [%] with m _н =125.09 GeV
, · · · · · · · · · · · · · · · · · · ·	H→bb	58.1
	H→WW	21.5
	$H \rightarrow \tau \tau$	6.26
$ar{b}, au^+,\mu^+$ W/Z	H→ZZ	2.64
$H \rightarrow \sqrt{V/Z} \sqrt{Yellow Report 4}$	Η→γγ	0.23
Z/γ Z/γ	H→µµ	0.022
	H→Zγ	0.154
$H \longrightarrow \{W^{\pm}\} W^{\pm} H \longrightarrow \{t/b/\tau\}$	H→cc	2.88
$W^+ \mathcal{V}_{\gamma}$	H→gg	8.18

Nan Lu (Caltech)

Precision Higgs measurements

We are entering an era of precision measurements of Higgs boson properties: a test bench for the SM and a portal to look for possible new physics

- Mass and width
- Production and decay rates
 - ▶ e.g. loop-induced ggF and H→yy processes sensitive to new physics
- Differential distributions and simplified template cross sections
- Quantum numbers (spin and CP)
- Off-shell couplings and indirect constraint of width

LHC, CMS and ATLAS detector

Higgs boson

Nan Lu (Caltech)

LHC Run 2 data taking

ATLAS and CMS detectors collected 139 and 137 fb⁻¹ pp collision data at 13 TeV

Thanks to the excellent performance of the LHC and efficient operation of the two detectors

Nan Lu (Caltech)

Physics object performance achievements

Nan Lu (Caltech)

ATLAS-CONF-2020-005

Higgs boson mass

Phys. Lett. B 805 (2020) 135425

W→ZZ*→4I and H→γγ are most sensitive channels: fully reconstructed with high resolution

Photon Energy Scale

correction vs p_T

0<InI<1 ⊢

1.0<|ŋ|<1.2 ⊢+

1.20<|ŋ|<1.44 ⊢

Nonlinearity syst. unc.

45

35.9 fb⁻¹ (13 TeV)

CMS

40

m_{γγ} in highest resolution category

Nan Lu (Caltech)

Precise Higgs measurements at the LHC August 2021

p_T (GeV)

65

ATLAS-CONF-2020-005

Higgs boson mass

Phys. Lett. B 805 (2020) 135425

One of the most precise electroweak measurements: reaching 0.1% precision

- Second Secon
- Solution Set and Set

- Measurement still dominated by statistical uncertainty:
 - more precise measurements expected with full Run 1+2 dataset
 - expected to reach 10-20 MeV precision at HL-LHC

Higgs boson production and decay rates

[ATLAS-CONF-2020-027, JHEP 07 (2021) 027, CMS HIG-19-005]

 \bigcirc ggF, VBF, VH and ttH observed with significance > 5 σ

Good compatibility among decay channels and with the SM

Nan Lu (Caltech)

Higgs boson couplings: kappa framework

Leading order framework to characterize possible deviations from the SM: assign coupling modifier to each (effective) interaction vertex (e.g. κ_W, κ_Z, κ_t...) and total width (κ_H)

Section Assumptions: single resonance, zero width, SM tensor structure JP = 0+

Second Compatibility Tests using к and their ratios

Higgs Boson coupling results

Sector Structure for the sector of κ : 6~20% (partial Run 2 data)

Iull Run 2 combination to come

Generic model [ATLAS-CONF-2020-027]

- B_{inv.} < 9% @95% CL, mainly constrained by H→inv.
- B_{undet}. < 19% @95% CL, constrained by inclusive rate + assuming |κ_ν| ≤ 1

Nan Lu (Caltech)

Simplified Template Cross Sections (STXS)

STXS: a natural evolution from Run 1 signal strength measurements

Measure production mode cross sections in exclusive phase space regions

- In the second second
- provide more finely-grained measurements
- isolate BSM sensitive phase space

Benefitting from global combination

Significant progress from ATLAS and CMS across accessible Higgs decays

Nan Lu (Caltech)

H→ZZ*→4l channel STXS

Nan Lu (Caltech)

[JHEP 07 (2021) 027, ATLAS-CONF-2020-026]

$H \rightarrow \gamma \gamma$ decay channel STXS

Measurements of various kinematic regions in ggH, VBF, VH, ttH production modes and tH

Nan Lu (Caltech)

H→WW*→evµv STXS

- Select events with an oppositely charged lepton pair, large missing transverse momentum
- Mass resolution worsened by neutrinos
- Large event rate and backgrounds: main backgrounds WW, tt, Z+jets measured in control regions

dilepton transverse mass DNN in VBF categories

Measurements in kinematic regions for ggH and VBF production modes

Nan Lu (Caltech)

$H \rightarrow \tau \tau$ channel STXS

[ATLAS-CONF-2021-044] [CMS: CMS-PAS-HIG-19-010]

Solution Set in the set of the s

validated with $Z \rightarrow II$ data with simulation-based corrections to kinematics (four vectors) and efficiencies

- Uncertainty improved by factor of 2-2.5 wrt 2016 data analysis [Phys. Rev. D 99, 072001 (2019)]
- \bigcirc Production modes: ggF 3.9 σ obs. (4.6 σ exp.); VBF 5.3 σ obs. (6.2 σ exp.)

Nan Lu (Caltech)

VH→bb STXS

Complementary analyses using small-R jets and boosted Higgs physics objects:

- Strong evidence 4.0σ for WH; observation 5.3σ of ZH [small-R jets analysis]
- \bigcirc Boosted Higgs analysis: 2.1 σ of VH

Boosted analysis: <u>Phys. Lett. B 816 (2021) 136204</u> small-R jets analysis: <u>Eur. Phys. J. C 81 (2021) 178</u>

Nan Lu (Caltech)

STXS Combination

Most precise measurements and interpretations obtained from statistical combination of production modes and decay channels:

- Statistical precision, in particular in most BSM-sensitive regions is still limited: more data will help!
- Provide an indirect constraint of the Higgs boson self-coupling through NLO EW corrections [ATLAS-CONF-2019-049, CMS HIG-19-005]
- Measurements interpreted using EFT framework and BSM models: [ATLAS-CONF-2020-053, CMS HIG-19-005]

- Some Set in Combination of STXS measurements in H→γγ, H→ZZ*→4I and VH,H→bb
- Overall good compatibility with SM

Higgs boson differential measurements

Higgs p_T sensitive to many BSM effects: physics in the ggF loops, perturbative QCD calculations, Higgs couplings to charm and bottom quarks, ...

$\kappa_c vs \kappa_b$ constraint from $p_T(H)$ shape

Nan Lu (Caltech)

$H \rightarrow \tau \tau$ differential measurements

Comparing to other final state (4I, $\gamma\gamma$) measurements, brings significant improvements: exploring the phase space of large jet multiplicities and/or Lorentz-boosted Higgs bosons

- [*ττ*: CMS <u>Submitted to Phys. Rev. Lett.</u>
- [γγ: CMS JHEP 07 (2021) 027, ATLAS-CONF-2020-026]
- [4I: CMS Eur. Phys. J. C 81(2021) 488, ATLAS Eur. Phys. J. C 80 (2020) 942]

Nan Lu (Caltech)

[JHEP 12 (2020) 085]

High pT Higgs production with $H \rightarrow bb$

Highly Lorentz-boosted Higgs as a tool to access very high-p_T regime, sensitive to BSM physics. CMS full Run 2:

Observed (exp) Significance: 2.5σ (0.7 σ)

Signal strength

DBT, AUC = 93.0%

 $\mu_H = 3.7 \pm 0.12(Stats.)^{+0.8}_{-0.7}(Sys.)^{+0.8}_{-0.5}(Theo.)$

validation with Z→bb $1.01 \pm 0.05 \,(\text{stat})^{+0.20}_{-0.15} \,(\text{syst})^{+0.13}_{-0.09} \,(\text{theo})$

Local significance with respect to SM: 1.9σ

Machine-learning methods based on signature of two b quarks inside a large-radius (distance parameter R = 0.8)

DDBT tagger improves efficiency by a factor of 1.6 at same QCD misidentification rate;

Soft-drop mass m_{SD}(bb) in signal region

Unfolded differential cross section in pT(H)

Nan Lu (Caltech)

High pT Higgs production with H→bb

ATLAS full Run 2

- b-tagging applied to contained track jets in large-radius (R = 1.0) jets
- Large backgrounds: multijet and V+jets studied using validation region, tt from control region
- \bigcirc Analysis method validated with Z \rightarrow bb

Measured cross section σ/σ_{SM} and 95% CL upper limits in three pT(H) bins

[ATLAS-CONF-2021-010]

Nan Lu (Caltech)

Higgs boson CP studies

- SM Higgs boson quantum number J^{CP} = 0⁺⁺

Run 2:

Sequence in the study of CP structure in Higgsfermion couplings in ttH, tH(H→γγ)

[ATLAS: Phys. Rev. Lett. 125 (2020) 061802 CMS: Phys. Rev. Lett. 125 (2020) 061801]

 \bigcirc CP structure of Higgs- τ Yukawa

coupling using $H \rightarrow \tau \tau$ decay channel [CMS-PAS-HIG-20-006]

See CP and anomalous couplings measured using H→ZZ^{*}→4I decay channel

[arXiv:2104.12152, Submitted to Phys. Rev. D Eur. Phys. J. C 80 (2020) 957]

 Parametrize Higgs Fermion Couplings in the mass eigenstate basis

$$A(\mathrm{Hff}) = -\frac{m_{\mathrm{f}}}{v} \bar{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i}\,\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\right) \psi_{\mathrm{f}}$$

Define mixing angle (α or in next slide $\varphi_{\tau\tau}$):

 $an(\phi_{ au au}) = rac{ ilde{\kappa}_ au}{\kappa_ au} rac{ ext{CP-odd coupling}}{ ext{CP-even coupling}}$

SMSM Pure CP-even state: $\alpha = 0^{\circ}$ Pure CP-odd state: $\alpha = 90^{\circ}$

Define: CP-odd contribution:

$$f_{\rm CP}^{\rm Htt} = \frac{|\tilde{\kappa}_{\rm t}|^2}{|\kappa_{\rm t}|^2 + |\tilde{\kappa}_{\rm t}|^2} \operatorname{sign}(\tilde{\kappa}_{\rm t}/\kappa_{\rm t})$$

Study CP structure in Higgs-top coupling

CP structure of Higgs- τ Yukawa coupling using $H \rightarrow \tau \tau$ decay channel CP-mixing angle $\phi_{\tau\tau} = (4 \pm 17)^\circ @68\%$ CL

Nan Lu (Caltech)

CP and anomalous couplings in $H \rightarrow ZZ^* \rightarrow 4I$

Solution States State

[CMS: arXiv:2104.12152, Submitted to Phys. Rev. D ATLAS: <u>Eur. Phys. J. C 80 (2020) 957</u>]

- Two categorization schemes employed to study:
 - effects in HVV vertices: joint analysis of four anomalous couplings
 - Solution State Structure Structure

Nan Lu (Caltech)

CP structure in Higgs couplings

Conclusion and outlook

- Precision measurements of Higgs boson properties so far agree with SM, hints for new physics could be unravelled as data accumulates and analysis advance
 - Higgs boson mass reaching 0.1% precision
 - Significant progress in fiducial/ differential and STXS measurements
 - Higgs boson coupling CP-structure studied in both Higgs-fermion and Higgs-boson couplings, no sign of CP-mixing so far
- The Discovery of the Higgs boson and the study of its properties have expanded our vision of particle physics
- Looking forward to LHC Run 3 and beyond

Projection for HL-LHC: <u>arXiv:1902.00134</u>

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment

- The expected LHC + HL LHC dataset is 20X the current dataset: percent precision of Higgs couplings
- Prospects for sub-percent precision at next generation colliders

Apologies for all I could not cover

Thank you!

backup slides

 $H \rightarrow \gamma \gamma$

$H \rightarrow \tau \tau$ channel STXS

- Probe Higgs coupling to third-generation fermions
- Sensitive to the gluon fusion process with relatively high Higgs boson p_T and sensitive to the VBF topology ggH pT > 300 GeV $m_{jj} > 700 GeV$

Higgs boson differential measurements

JHEP 03 (2021) 003

Measurements in WW $\rightarrow \mu evv$ decay channel using full Run 2 data Solution I large branching ratio makes this channel competitive with H $\rightarrow \gamma \gamma$ and H $\rightarrow ZZ^* \rightarrow 4I$ channels

Nan Lu (Caltech)

ttH and tH production: final state with electron, muon and hadronically decaying τ leptons

Eur. Phys. J. C 81 (2021) 378

- Solution Target events in ttH and tH production modes (top quark decays either to lepton+jets or all-jet channels) and $H \rightarrow WW$, $H \rightarrow \tau \tau$, or $H \rightarrow ZZ$ decays channels
- Significance ttH: $4.7(5.2)\sigma$, tH: $1.4(0.3)\sigma$ obs(exp)
- □ Higgs coupling to top quark: −0.9 < κ_t < −0.7 or 0.7 < κ_t < 1.1 @95% CL

Nan Lu (Caltech)

ttH multilepton and STXS in ttH,H→bb

 \subseteq ttH Significance: 1.3(3.0) σ , obs(exp)

ATLAS-CONF-2020-058

Simplified template cross section (STXS) measurements in five bins of pT(H), boosted selection targeting $p_T(H) > 300$ GeV

